
SPEAR Theorem Prover

Domagoj Babić∗

(Theorem prover architect)
University of British Columbia

Frank Hutter
(Search parameter optimization)

University of British Columbia

Abstract
SPEAR is a bit-vector arithmetic theorem prover designed for prov-
ing software verification conditions. The core of the theorem prover
is a fast and simple SAT solver, which is described in this paper.

Keywords Theorem proving, boolean satisfiability, parameter
optimization, modular arithmetic, bit-vector arithmetic, machine
arithmetic

1. Introduction
SPEAR is a theorem prover for bit-vector arithmetic, designed for
software verification, but is also fast on other industrial problems,
like bounded hardware modelchecking. When given bit-vector
arithmetic constraints, SPEAR performs elaborate encoding and
optimization of constraints. Together with structural information,
the encoded formula is passed to the core SAT solver. Given CNF
input, SPEAR acts like an ordinary SAT solver, and does not at-
tempt to reconstruct structural information, which is typically lost
when the industrial instances are encoded into CNF.

The following sections describe the main features of SPEAR
architecture, and parameter optimization.

2. Architecture
The core of SPEAR is a custom-made DPLL SAT solver. Problems
coming from the software verification domain frequently require
fast path enumeration and fast refutation of infeasible paths. As
SAT solvers are very effective tools for both enumeration and refu-
tation, the decision to base the bit-vector arithmetic decision pro-
cedure on a SAT solver came naturally. Custom-made SAT solver
offers significantly more opportunities for application-specific op-
timization than off-the-shelf SAT solvers.

SPEAR features highly optimized boolean constraint propaga-
tion (BCP), very similar to the BCP routine in HYPERSAT [1].
Several other features were borrowed from HYPERSAT: phase se-
lection heuristic and algorithm for finding the next watchedliteral.
Clause representation is similar as well. A number of other features
was modelled after Minisat [3]: frequent restarts and learned clause
minimization. The implementation of the clause minimization was
improved in several ways. For instance, Minisat uses stack-based
work queue for clause minimization, while SPEAR uses a FIFO,
which has a predictable memory access pattern, and is easierto
optimize.

A number of various phase and variable decision heuristics has
been implemented in SPEAR. A simple phase selection heuristic
that always picksfalse phase first for each decision literal tends
to perform well on instances generated from circuits. However, we
found that the HYPERSAT phase selection heuristic performs much
better in general. Depending on the average length of implication

∗ His research is supported by a Microsoft Graduate Fellowship.

chains, HYPERSAT picks either the phase with more or less en-
queued clauses on watched lists. If implication chains are long, im-
plying the phase that results in more unsatisfied clauses increases
the likelihood of running into a conflict, effectively decreasing the
average length of implication chains. If the chains are short (more
frequent case for industrial benchmarks), picking the phase that sat-
isfies more watched clauses tends to reduce the total amount of
computation. Since the second case is more frequent, that isthe
default phase selection heuristic in SPEAR.

SPEAR is very configurable. Almost all search parameters
(roughly 25 parameters) are modifiable from the command line.
Besides setting individual parameters, SPEARalso supports prede-
fined parameter sets for specific problems. This is an important fea-
ture, because various combinations of parameters can have drastic
effects on the runtimes. For instance, even with a very lightweight
application-specific parameter optimization, we observed500 X
performance improvement on software verification instances over
the best manually optimized parameter configuration (manually op-
timized for HW BMC), and over 100 X over manually optimized
Minisat [4]. The next section presents parameter optimization in
more detail.

3. Parameter Optimization
Determining appropriate values for an algorithm’s free parameters
is a challenging and cumbersome task in the design of effective
algorithms for hard problems. It is, however, well worth theeffort
since good parameter settings often make the difference between
solving a problem in seconds and solving it in hours (or not atall).

We believe that for complex parameter tuning tasks automatic
(or semi-automatic) approaches can outperform manual approaches
while at the same time considerably reducing the time algorithm
designers need to spend for tuning their algorithms. In [4],we
demonstrated that this was indeed the case when tuning SPEAŔ s
parameters for solving certain classes of industrial bounded model
checking instances as well as software verification instances: auto-
matic tuning resulted in speedup factors of 4.5 for bounded model
checking and 500 for software verification.

We attribute the potential of automatic algorithm configuration
to the fact that during development algorithm designers typically
only track performance on a few instances, limiting expensive batch
experiments to infrequent intervals. This bears the risk of“over-
tuning” performance to the used instances with poor generalization
to other instances, even ones with very similar characteristics [2, 5].
Further, humans tend to focus on single algorithm components
instead of grasping the complex interplay of all componentstaken
together.

Automatic tools for parameter optimization also pave the way
to an automatic algorithm design, viewed as the combinationof al-
ternative building blocks. For example, two tree search algorithms
that only differ in their preprocessing and variable heuristics can be

1 2008/4/2



seen as a single algorithm with two nominal parameters. Thus, con-
structing the best algorithm for a domain can be seen as a parameter
optimization problem.

SPEAR is an excellent testbed for automatic parameter opti-
mization for the following reasons:

• It has a large number of parameters of various types. Its 25 pa-
rameters include categorical choices between heuristics,nomi-
nal parameters, as well as integer and continuous parameters.

• It shows state-of-the-art performance for a practically relevant
class of problem instances, and tuning it will thus be of high
practical relevance. In particular, in our experimental analysis
SPEARconsistently showed the best results for solving software
verification instances.

The method we used for parameter optimization is the same we
used in [4]. It is called ParamILS and views parameter tuningas an
optimisation problem [5]. In a nutshell, it performs an iterated local
search in parameter configuration space, computing the objective
function to be maximized as the geometric mean speedup over
the default parameters. Since the optimization objective was good
performance in the SAT Race, and instances were announced to
be similar to the competitions from previous years, we used the
union of the SAT Race 2006 instances and the instances from
the industrial track of the SAT Competition 2007 as a training
benchmark set.

From these instances, we omitted those that were not solved by
any of the following solvers within 900 seconds on our machines:1

Eureka, MXC, Minisat07, Picosat, Rsat2.0, Tinisat, SPEAR with
parametersfh1.0 from the SAT Competition 2007, and SPEAR
with parameters setting for bounded model checking and software
verification from [4]. This process left 333 instances for tuning. As
the cutoff time for a single run during tuning we used 900 CPU
seconds.

We used a combination of BasicILS(333) and FocusedILS for
tuning: initially we found a good parameter configuration with 20
separate runs of FocusedILS, and then improved it with BasicILS
(which is easier to parallelize on a computer cluster). Thislead to
parameter configurationfh1.3, which we used for the qualifica-
tion round. After the qualification we performed another round of
tuning with 20 separate runs of FocusedILS, which yielded the im-
proved parameter configurationfh1.4.

Figure 1 compares the performance of parameter configuration
fh1.0 (used in our submission to the SAT Competition 2007) and
fh1.4 (used in this year’s submission). Notice thatfh1.4 reduced
the number of time-outs from 101 to 61 instances. This is verysig-
nificant as can be seen by a comparison with other state-of-the-
art industrial SAT solvers: in our experiments the solvers Spear
(fh1.4), PicoSAT, Spear (fh1.3), Eureka, Rsat2.0, MiniSAT07,
Spear (fh1.0), TiniSAT, and MXC timed out on 66, 73, 81, 88,
91, 100, 101, 114, and 120 instances. Although Spear(fh1.4) per-
formed best in these experiments, this by no means implies that it
should win the SAT Race: our experiments only used last year’s
solvers, and were run on a different architecture than the competi-
tion. Furthermore, the set of instances will likely be somewhat dif-
ferent than the one we used, which will compromise the optimality
of our chosen parameter setting.

4. Future Work
SPEAR is a bit-vector arithmetic decision procedure, and the
custom-made SAT solver is only one of its components. Although

1 Implementations of these solvers were obtained from the SATCompe-
tition 2007 website. Experiments were performed on a cluster of 55 dual
3.2GHz Intel Xeon PCs with 2MB cache and 2GB RAM, running Open-
SuSE Linux 10.1.

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

CPU time [s] for fh1.4 (SAT Race 08)

C
P

U
 ti

m
e 

[s
] f

or
 fh

1.
0 

(S
A

T 
C

om
p.

 0
7)

Figure 1. Performance of old SPEARparameters tuned for the SAT Com-
petition 2007 (fh1.0) vs. new SPEAR parameters tuned for the SAT Race
2008 (fh1.4); every dot represents one instance, every red circle a time-out
at 900 CPU second. Settingfh1.0 timed out on 101/333 instances, while
settingfh1.4 only timed out on 66/333 instances; on instances solved with
both parameter settings, the average runtimes are 158s (fh1.0) and 91s
(fh1.4).

SPEAR’s expression simplifier could be significantly improved, it
has become very hard to improve SPEAR’s overall performance
without the application-specific tuning. The Satisfiability Modulo
Theories (SMT) approach offers much more flexibility and research
opportunities than a bit-vector arithmetic decision procedure based
on a SAT solver. Hence, future research, if there will be any,will be
focused on transforming SPEAR into a full-blown SMT prover and
researching practical approaches to solving bit-vector arithmetic
constraints within the SMT framework.

On the parameter optimization side, we are evaluating the use
of model-based approaches that would not only yield a well-
performing parameter configuration, but also provide information
about the importance of each parameter, the interaction of parame-
ters, and interactions between search parameters and instance fea-
tures.

References
[1] Domagoj Babic, Jesse Bingham, and Alan J. Hu. B-cubing:

New possibilities for efficient sat-solving.IEEE Trans. Comput.,
55(11):1315–1324, 2006.

[2] M. Birattari. The Problem of Tuning Metaheuristics as seen from
a Machine Learning perspective. PhD thesis, Universite Libre de
Bruxelles, Facult’e des Sciences Appliqu’ees, IRIDIA, Institut de
Recherches Interdisciplinaires et de D’eveloppements en Intelligence
Artificielle, 2005.

[3] Niklas Eén and Armin Biere. Effective preprocessing insat through
variable and clause elimination. InSAT, volume 3569 ofLecture Notes
in Computer Science, pages 61–75. Springer, 2005.

[4] F. Hutter, D. Babić, H. H. Hoos, and A. J.Hu. Boosting verification
by automatic tuning of decision procedures. InFormal Methods in
Computer Aided Design (FMCAD’07), 2007.

[5] F. Hutter, H. H. Hoos, and T. Stützle. Automatic algorithm configura-
tion based on local search. InProc. of the Twenty-Second Conference
on Artifical Intelligence (AAAI ’07), pages 1152–1157, 2007.

2 2008/4/2


