SPEAR Theorem Prover

Domagoj Babi¢
(Theorem prover architect)
University of British Columbia

Abstract

SPEARIs a bit-vector arithmetic theorem prover designed for prov
ing software verification conditions. The core of the theoprover
is a fast and simple SAT solver, which is described in thisspap

Keywords Theorem proving, boolean satisfiability, parameter
optimization, modular arithmetic, bit-vector arithmetimachine
arithmetic

1. Introduction

SPEARIs a theorem prover for bit-vector arithmetic, designed for
software verification, but is also fast on other industrialgems,
like bounded hardware modelchecking. When given bit-wecto
arithmetic constraints, BEAR performs elaborate encoding and
optimization of constraints. Together with structuraloimhation,
the encoded formula is passed to the core SAT solver. GiveR CN
input, SPEAR acts like an ordinary SAT solver, and does not at-
tempt to reconstruct structural information, which is tgily lost
when the industrial instances are encoded into CNF.

The following sections describe the main features eE&R
architecture, and parameter optimization.

2. Architecture

The core of $EARIS a custom-made DPLL SAT solver. Problems
coming from the software verification domain frequently uieg
fast path enumeration and fast refutation of infeasibléxpafs
SAT solvers are very effective tools for both enumeratiod iafu-
tation, the decision to base the bit-vector arithmetic sleni pro-
cedure on a SAT solver came naturally. Custom-made SAT isolve
offers significantly more opportunities for applicatiopesific op-
timization than off-the-shelf SAT solvers.

SPEAR features highly optimized boolean constraint propaga-
tion (BCP), very similar to the BCP routine inWWERSAT [1].
Several other features were borrowed fromA#RSAT: phase se-
lection heuristic and algorithm for finding the next watchi¢etal.
Clause representation is similar as well. A number of othatires
was modelled after Minisat [3]: frequent restarts and ledrclause
minimization. The implementation of the clause minimiaativas
improved in several ways. For instance, Minisat uses sbasled
work queue for clause minimization, whileeSAR uses a FIFO,
which has a predictable memory access pattern, and is dasier
optimize.

A number of various phase and variable decision heuristiss h
been implemented in AR A simple phase selection heuristic
that always pickdalse phase first for each decision literal tends
to perform well on instances generated from circuits. Havewe
found that the WPERSAT phase selection heuristic performs much
better in general. Depending on the average length of iradtio

*His research is supported by a Microsoft Graduate Fellgwshi

Frank Hutter
(Search parameter optimization)

University of British Columbia

chains, HYPERSAT picks either the phase with more or less en-
queued clauses on watched lists. If implication chainsarg,lim-
plying the phase that results in more unsatisfied clausesases

the likelihood of running into a conflict, effectively deaséng the
average length of implication chains. If the chains are tsfmore
frequent case for industrial benchmarks), picking the eltlaat sat-
isfies more watched clauses tends to reduce the total améunt o
computation. Since the second case is more frequent, thiheis
default phase selection heuristic iRESAR.

SPEAR is very configurable. Almost all search parameters
(roughly 25 parameters) are modifiable from the command line
Besides setting individual parameter®,E3 R also supports prede-
fined parameter sets for specific problems. This is an impbfta-
ture, because various combinations of parameters can hastcd
effects on the runtimes. For instance, even with a veryWgight
application-specific parameter optimization, we obsen&@D X
performance improvement on software verification instarmeer
the best manually optimized parameter configuration (minop-
timized for HW BMC), and over 100 X over manually optimized
Minisat [4]. The next section presents parameter optirtnain
more detail.

3. Parameter Optimization

Determining appropriate values for an algorithm'’s freeapagters
is a challenging and cumbersome task in the design of eféecti
algorithms for hard problems. It is, however, well worth #féort
since good parameter settings often make the differensecket
solving a problem in seconds and solving it in hours (or natliqt

We believe that for complex parameter tuning tasks aut@mati
(or semi-automatic) approaches can outperform manuabappes
while at the same time considerably reducing the time algori
designers need to spend for tuning their algorithms. In ¥4,
demonstrated that this was indeed the case when turmeg s
parameters for solving certain classes of industrial bedrndodel
checking instances as well as software verification ingsmnauto-
matic tuning resulted in speedup factors of 4.5 for boundedeh
checking and 500 for software verification.

We attribute the potential of automatic algorithm configiora
to the fact that during development algorithm designerscally
only track performance on a few instances, limiting expembatch
experiments to infrequent intervals. This bears the riskower-
tuning” performance to the used instances with poor geizatain
to other instances, even ones with very similar charatiesig2, 5].
Further, humans tend to focus on single algorithm companent
instead of grasping the complex interplay of all componégiten
together.

Automatic tools for parameter optimization also pave thg wa
to an automatic algorithm design, viewed as the combinatfat-
ternative building blocks. For example, two tree searclorgms
that only differ in their preprocessing and variable hdigéscan be

2008/4/2

seen as a single algorithm with two nominal parameters. ,Tdars
structing the best algorithm for a domain can be seen as eptea
optimization problem.

SPEAR is an excellent testbed for automatic parameter opti-
mization for the following reasons:

e It has a large number of parameters of various types. Its 25 pa
rameters include categorical choices between heuristirgj-
nal parameters, as well as integer and continuous parasneter

e It shows state-of-the-art performance for a practicallgwant
class of problem instances, and tuning it will thus be of high
practical relevance. In particular, in our experimentadlgsis
SPEARconsistently showed the best results for solving software
verification instances.

The method we used for parameter optimization is the same we
used in [4]. It is called ParamILS and views parameter tuaisign
optimisation problem [5]. In a nutshell, it performs an &tsd local
search in parameter configuration space, computing thetblge
function to be maximized as the geometric mean speedup over
the default parameters. Since the optimization objectige good

performance in the SAT Race, and instances were announced toF

be similar to the competitions from previous years, we uéed t
union of the SAT Race 2006 instances and the instances from
the industrial track of the SAT Competition 2007 as a tragnin
benchmark set.

From these instances, we omitted those that were not sojved b
any of the following solvers within 900 seconds on our maehin
Eureka, MXC, Minisat07, Picosat, Rsat2.0, TinisabE&R with
parametersghi.0 from the SAT Competition 2007, andPBAR
with parameters setting for bounded model checking andvaodt
verification from [4]. This process left 333 instances faring. As
the cutoff time for a single run during tuning we used 900 CPU
seconds.

We used a combination of BasiclLS(333) and FocusedILS for
tuning: initially we found a good parameter configurationha20
separate runs of FocusedILS, and then improved it with BzSic
(which is easier to parallelize on a computer cluster). Tdésl to
parameter configuratiofhi .3, which we used for the qualifica-
tion round. After the qualification we performed anotherrmwf
tuning with 20 separate runs of FocusedILS, which yieldediti
proved parameter configuratidhi . 4.

Figure 1 compares the performance of parameter configaratio
£h1.0 (used in our submission to the SAT Competition 2007) and
fh1.4 (used in this year's submission). Notice that . 4 reduced
the number of time-outs from 101 to 61 instances. This is sayy
nificant as can be seen by a comparison with other stateeef-th
art industrial SAT solvers: in our experiments the solvepes®®
(fh1.4), PicoSAT, Spearfthl.3), Eureka, Rsat2.0, MiniSATO7,
Spear £h1.0), TiniSAT, and MXC timed out on 66, 73, 81, 88,
91, 100, 101, 114, and 120 instances. Although Sigaar@) per-
formed best in these experiments, this by no means implastth
should win the SAT Race: our experiments only used last gear’
solvers, and were run on a different architecture than thepedi-
tion. Furthermore, the set of instances will likely be sorhatdif-
ferent than the one we used, which will compromise the optiyna
of our chosen parameter setting.

4, FutureWork

SPEAR is a bit-vector arithmetic decision procedure, and the
custom-made SAT solver is only one of its components. Algou

Limplementations of these solvers were obtained from the SAmpe-
tition 2007 website. Experiments were performed on a dusté5 dual
3.2GHz Intel Xeon PCs with 2MB cache and 2GB RAM, running Open
SuSE Linux 10.1.

=
o
w

0O cO@wo o 0 0o o

N

[EN
o

@ @ 0 aVGMd @O0

(=N

=
o

=
o
(=}

CPU time [s] for th1.0 (SAT Comp. 07)

1 0 1 2 103
CPU time [s] for fh1.4 (SAT Race 08)

igurel. Performance of old BEARrparameters tuned for the SAT Com-
petition 2007 £h1.0) vs. new $EAR parameters tuned for the SAT Race
2008 €h1.4); every dot represents one instance, every red circle adime

at 900 CPU second. Settirfih1.0 timed out on 101/333 instances, while
settingfhi.4 only timed out on 66/333 instances; on instances solved with
both parameter settings, the average runtimes are ¥8s @) and 91s
(fh1.4).

SPEAR's expression simplifier could be significantly improved, it
has become very hard to improveeEAR's overall performance
without the application-specific tuning. The SatisfiagiModulo
Theories (SMT) approach offers much more flexibility ancteesh
opportunities than a bit-vector arithmetic decision prhee based
on a SAT solver. Hence, future research, if there will be aiilybe
focused on transformingfEARinto a full-blown SMT prover and
researching practical approaches to solving bit-vectithraetic
constraints within the SMT framework.

On the parameter optimization side, we are evaluating tee us
of model-based approaches that would not only yield a well-
performing parameter configuration, but also provide imfation
about the importance of each parameter, the interactioanafpe-
ters, and interactions between search parameters anddadea-
tures.

References

[1] Domagoj Babic, Jesse Bingham, and Alan J. Hu. B-cubing:
New possibilities for efficient sat-solvinglEEE Trans. Comput.
55(11):1315-1324, 2006.

[2] M. Birattari. The Problem of Tuning Metaheuristics as seen from
a Machine Learning perspectivePhD thesis, Universite Libre de
Bruxelles, Facult'e des Sciences Appliqu’ees, IRIDIA,tiug de
Recherches Interdisciplinaires et de D’eveloppementsitiigence
Artificielle, 2005.

[3] Niklas Eén and Armin Biere. Effective preprocessingsat through
variable and clause elimination. 8AT, volume 3569 of.ecture Notes
in Computer Sciencgages 61-75. Springer, 2005.

[4] F. Hutter, D. Babi¢, H. H. Hoos, and A. J.Hu. Boosting ifieation
by automatic tuning of decision procedures. FHormal Methods in
Computer Aided Design (FMCAD’0,72007.

[5] F. Hutter, H. H. Hoos, and T. Stitzle. Automatic algbnit configura-
tion based on local search. Rroc. of the Twenty-Second Conference
on Artifical Intelligence (AAAI '07)pages 1152-1157, 2007.

2008/4/2

