Efficient SAT Solving: Beyond Supercubes

Anonymous version

ABSTRACT

SAT (Boolean satisfiability) has become the primary Boolesat
soning engine for many EDA applications, so the efficienc@ AT
solving is of great practical importance. Recently, Gotdlet al.
introducedsupercubinga different approach to search-space prun-
ing that unifies many existing methods. Their implementatie-
duced the number of decisions, but no speedup was obtained. |
this paper, we generalize beyond supercubes, creatingeythe
call B-cubing and show how to implement B-cubing in a practical
solver. On extensive benchmark runs, using both real pnubbknd
synthetic benchmarks, the new technique is competitivererage
with the newest version of ZChaff, is much faster in some gase
and is more robust.

1. INTRODUCTION

The problem of satisfiability of boolean formulas (SAT) is a
well-known NP-complete problem. In short, given a booleamcf
tion f, one needs either to find a satisfying assignment or to prove
that such doesn'’t exist. SAT has been intensively used iryrdan
mains. Our focus is the application of SAT to structured feots,
especially those resulting from EDA domain, like model dtieg
(bounded [3] and unbounded [12]), FPGA routing [15], and &TP
[18]. Such industrial applications require complete SAlvers,
meaning that the solver must be capable of proving that proli$
either satisfiable or definitely unsatisfiable.

Since the early days of SAT solving [5], it was clear that the
efficiency of SAT solvers depends heavily on search space- pru
ing rules and decision heuristics. Decision heuristicsehget a
fair amount of attention in the literature [8, 2, 22, 10]. #dugh
some limited success has been achieved, many proposedtlusuri
are extremely sensitive to chosen parameters, stronglgniiemt
on the details of implementation of the rest of the sdlyand in
general tend to perform well only on a restricted set of pFpid.

On the other hand, in spite of the obvious relation betwean-pr
ing rules and performance of SAT solvers, there exists ohigral-
ful of SAT pruning techniques. Even fewer are actually used i

IMainly clause database organization, learning mechanésid,
preprocessing.

This is an anonymized version of this paper to permit blindesg. Copy-
right is held by the original authors. Permission to copyedtistribute all
or part of this work is permitted only in the context of revieg this paper
for the publication to which it was submitted.

Design and Automation Conferen2805

Copyright 200X by the original authors..

for DAC review.

modern SAT solvers. Learning and conflict directed backirar

are probably the most well known, and work quite well. Inviegt
new pruning techniques for DPLL solvers is encumbered by the
requirements for compatibility with DPLL framework and sting
pruning techniques. In addition, the savings achieved sty

the additional cost.

1.1 Existing Pruning Techniques

The goal of this section is to provide a quick introductioseone
pruning techniques that will be mentioned later in the text.

Boolean Constraint Propagation (BCP) and Pure Literal Rule
(PLRY were proposed in [5]. Modern SAT solvers have efficient
BCP engines for detection of unit clauses, propagation dflitn
erals, and conflict detection. A major step forward in SATvsw
was the invention of lazy algorithms for BCP based on he#d/ta
lists [22] and watched literals scheme [13].

The literals which appear in boolean formula with only onags
are called pure literals. According to PLR, all the claused ton-
tain pure literals may be eliminated. PLR is considered ttooe
expensive to be performed on every step in SAT solving, as ex-
act counters of appearances of each literal need to be nimadta
As it will be explained later, B-cubing subsumes PLR. So,®ur
perimental solver HyperSAT uses PLR only implicitly thréuB-
cubing.

When a conflict is detected, the solver finds the reason for the
conflict and tries to resolve it. The simplest method is tokbac
track to the last decision variable which hasn’'t been exqgavith
both phases, flip its current assignment, and proceed wititise
More elaborate method is to analyze the conflict and badktiac
the decision variable that is actually responsible for theflect.
That scheme is called Conflict-Directed Backtracking (C2BY
GRASP [11] was the first SAT solver to implement it.

Learning goes hand-in-hand with conflict-directed baakirzg.
Different solvers feature different learning strategiesl &lause
deletion schemes. One thing in common is that they all temver
the implication graph in reverse direction and add clausasdor-
respond to different cuts in the implication graph [23]. farexper-
imental results [23] it seems that adding a clause that sporeds
to the cut made before the first Unique Implication Point (FU
is a better choice than other cuts proposed so far. Thosésesu
have recently been challenged by a suggestion that addiengrie-
diate clauses that correspond to the cuts made closer totifiect
might perform better [17], but no experimental results wgiven.
For a more extensive introduction into CDB and learning, and
exhaustive list of references, the reader is referred th [24

Although much work remains to be done on different learning
schemes, it is clear that learning schemes proposed sorfarsea

2pLR was called Affirmative-Negative Rule in the original pap

only a fraction of information inferable from the conflict®ue to
memory constraints, it is impossible to add all the claukas¢an
be learned to the clause database.

Recently, a theory of essential points [16, 7] has been zexho
The theory unifies many existing search space pruning scheme
(like PLR, CDB, and learning) under a single theoreticatfesvork
and serves as a tool for developing new pruning techniquegwA
pruning technique callesupercubingvas proposed as an example
of application of the theory of essential points. Their solwas
a proof of concept, and although supercubing reduced the num
ber of decisions, no actual speedup has been reported. Ghidrge
work [1] pointed out that supercubing is not readily comiplati
with learning and proposed an alternative backtrackinglaach-
ing scheme to integrate supercubing and learning. The tegbor
performance results of the solver were comparable to aieeaelk-
sion of ZChaff (v2003.11.04)[13].

1.2 Contributions

In this paper, we generalize the theory of supercubing t@-nt
duce a new search-space pruning technique, performingnacher
elaborate conflict analysis and moving beyond cubes as aavay t
store knowledge of learned conflicts. The theoretical idehich
we dub B-cube, will blow up in space on practical problemsyso
introduce a data structuioolean Constraint Treef®r compactly
representing a safe approximation of the ideal B-cubes. riEme
technique can be made compatible with learning, but it regui
significant modifications of the backtracking and decisicaking

A DCC contains all the decision variables involved in theftion
and is typically computed by traversing the implicationgiréack-
wards until the resolvent contains only decision liter@2][The
negation of a DCC is a cube (via an application of DeMorgan’s
Law) that we will call acertificate(of unsatisfiability) and denote
by cert(u), whereu is a conflict node ifT. The certificatecert(u)

has the property that no mintenmsuch tham — cert(u) will sat-

isfy ¢.

Consider a decision nodgfor variablex, and the certificates en-
countered when exploring® for someb € B. Note that for any
such certificatec, ¢ may or may not contain®, but ¢ certainly
doesn’t containk®. We are interested in those certificateshat
involve x°.

Definition 1. The set of all certificates found i that include
the literalx? will be denotedA,(d), wherex is the variable ofl.

Definition 2. Suppose that there are no satisfying assignments
in d°. TheB-cubeis then defined as a set of certificaigd) =
{cert(u) |ue Ay(d)} and we also defindg;(d) = flip(By(d),x),
wherex is the variable ofl.

Definition 3. Let S,(d) be the set of minterms defined By(d) =
{me M| m— cfor somec € Bj(d)}

THEOREM 1. Suppose 'Ei_has no satisfying assignments. Then
for any minterm m found infithat satisfiesp, we have ne S(d).

mechanisms, as in [1]. We have implemented our new technique Supercubing and B-cubing are pruning techniques that both e

in an experimental solver HyperSAT, which features bothnieg
and B-cubing. Although HyperSAT is in its infancy, we repert
couraging results and show that it can compete with leadigge
solvers like the newest version of ZChaff [13] on a wide ranfie
problems.

2. NEW PRUNING TECHNIQUE

We start with some basic definitions, and continue with exgpla
tions of supercubing and B-cubing. The proofs are omittedha
space constraints do not permit the presentation of thesghtieo-
retical framework on which the proofs are based. We assume so
basic familiarity with modern DPLL-based SAT solvers.

LetB = {0,1}, and let be a finite set of boolean variables. A
literal is denotedx? wherex € #/_andb € B. Define0 = 1 and
1 =0, then we say that the litera&? is obtained byflipping »°.

A cube(clausd is a conjunction (disjunction) of literals in which
each variable fron appears at most once.rAinterm(also called
an assignmentis a cube in which each variable appears exactly
once. The set of all minterms is denotedMy A CNF formulais a
conjunction of clauses. Fore ¢ and a cube, we writeflip(c, x)
to denote the cube formed by flipping tkditeral of c (if it exists),
and for a set of cubeS we defindlip(S x) = {flip(m,x) | me S}.

We assume a simple SAT solver which systematically explores
a search tree without restarts or CDB, and the solver’s iigptite
CNF formulad. We useT to denote the binary search tree traversed
by the solvet. The nodes ofl are labeled with variables ai .

A decisionis a node inT that has two children, thé-child and
1-child, that correspond respectively to assigning 0 and 1 to the
decision’s variable. For a decisiehandb € B , we letd? denote

the subtree of rooted at théd-child of d.

Assumingd is not satisfiable, the leavesDfare callecconflicts
Both supercubing and B-cubing require the solver to constau
decision conflict clauséDCC) whenever a conflict is encountered.

SFor brevity, we leavd formally undefined in this paper.

ploit Theorem 1 in the following manner. While exploridf, some
over-approximatior8 of S,(d) is computedl. Then, while explor-
ing db, attention is restricted to the assignmentsSofi.e. assign-
ments ind® that are not irS are pruned. The difference between
supercubing and B-cubing is that the latter's over-appnation

is a tighter fit than the former’s, hence B-cubing allows farren
pruning.

2.1 Supercubing

Supercubing over-approximat&s(d) using a single cube, de-
fined as follows. The superculse,(d) is the least cube that sub-
sumes,(d), i.e. sgy(d) is the conjunction of all literalg such that

S,(d) — .

Example 1.Decisions in the search tree, sorted ascending by de-
cision level, are(‘i’,x%,xg, and letd be the decision node fog. The
solver explores the search subtd(i.e. xg) and finds no solu-
tion. Assume there were three conflicts and a certificateusdo
for each:c; =X AxEAXEARE, ¢ =33 A3 A AXEAXE A, and
c3 =X A A3 A AXEAXE. The least cube that contains the cer-
tificates that included, namelyc, andcs, is sg(d) = x3 A3 AX).

As X2 has a higher decision level thah the corresponding literal
can be eliminated from the supercube, as it is already amdign
Hence, sincegy (0) over-approximateSy(d), in the subtree® (i.e.
after flippingxs to 1), the solver can immediately assbgﬂa

Implementation of supercubing stores an array represgatiu-
percube for each decision variable. Storing supercubest imem-
ory demanding, as the average size of the supercube peratecis
node is small (density of supercubes, [1]). Also, since siens
aboved are the same in bott’ andd?, such variables need not be
stored in the supercube, which reduces space requiremetiierf

4To be more precise§ need only over-approximate the intersec-
tion of §,(d) with the subspace correspondingdfh

Supercubing can prune the search space that can’t be pryned b structure loosely based on decision trees[6] that is spadifide-

learning, as explained in [7]. An algorithm for computingost+
cubes and a thorough discussion of the integration of superg
and learning are given in [1].

2.2 B-cubing

Even more information can be learned from certificates imkxa
ple 1. After assigningéxg the solver propagates implied variables,
if there are any, or makes a new decision. Let's assume tivetde
a new decisiorxé. At that point, the solver can immediately assign
x0x as implied variables (i.e. it doesn't need to explrger X9).

Going back to Example 1, the solver can immediately asxsign
afterxi, but than there no more literals that are common to all cer-
tificates, but there is a variable which appears in all cediés in
Ao(c), and that iss. So, the solver can chooggas a new decision
variable. Ifx}) is chosen, it can immediately assi@(l, according
to the previous discussion. Equivalently, after picki@gxé can be
immediately assigned.

B-cubing is a generalization of supercubing. The fact thatem
information can be learned from certificates was first olesgitwy
Nadel [14] and implemented in Jerusat SAT solver. It seeras th
Jerusat keeps all the certificates and does the analysis avhew
decision is needed. Needless to say, such approach refuiges
amounts of memory and it is infeasible even for moderataiyea
problems. For that reason, Jerusat seems to keep certficalye
for certain number of decision levels. When it backtracksobthe
window, it discards certificates. This approach has sewer@bus
drawbacks.

First, certificates contain a significant amount of reduhdan
formation. In Example 1, certificates andc, both contain infor-
mation that onlyxg needs to be explored after flippirx@. Clearly,
if we had a suitable data structure to represent the comelspp
B-cube, less memory would be required.

Second, discarding certificates means that the search gjlhce
be less constrained and therefore more search will be ne@tési
is especially serious when the certificates are discardetifision
nodes close to the root of the search tree. For example, if roo
decision node contains 3 literals in its supercube (or instieen
of BCT data structure, as it will be explained later), aftgsding
the root node, the supercube would ideally reduce the sespiate
eight fold.

An advantage of Jerusat approach is its simplicity. If adl ¢lon-
flicts are kept (within the predefined window), reasoningcprure
can be entirely implemented inside of the decision engime. So-
lution we are proposing requires substantial changes iktizauk-
ing mechanism, conflict analysis, and decision engine.

When it comes to the integration of B-cubing and learning on
runs into the same compatibility problems as with superaybi
This problem has been extensively discussed in [1].

3. APPROXIMATION OF B-CUBES

As mentioned before, keeping all the conflicts (i.e. entire B
cube) is not an option. Hence, we need to find a more compact, ap
proximate representation that keeps as much relevanthsspace
pruning information as possible. BDDs [4] or ZBDDs [9], paps
with heuristic approximation techniques, certainly comertind.
Standard decision diagrams, however, are not suited fotatsie
In particular, a key advantage of SAT is the ability to haviéedi
ent decision orders along different parts of the searchpingdhat
the data structure must efficiently handle different vdaadrders
for different certificates, ruling out standard orderedisiea dia-
grams. We have chosen instead to create a more appropriate da

signed to efficiently support the operations we need.

Let's consider some of the key properties of the DPLL aldponit
and try to picture an ideal B-cube that would be of the greates
for search space pruning. The SAT search tree is a binary tree
in which decision nodes have two outgoing edgemnd implied
nodes have one. Ideally, our new pruning technique wouldigeo
the solver with a large number of literals that can be immtetja
assigned after flipping some decision variable. Obviowslgh lit-
erals would need to be present in all the certificates, so Weali
them supercubed literals. The more supercubed literalsave, h
the higher is the probability that more unit clauses will lemer-
ated, increasing the chances for quick conflict detectiom, tise
first desired property is certainly to have as many supentiites-
als as possible.

After supercubed literals are removed from certificatesdfare
no more common literals, but there might be common variables
Common variable can be used to sort the certificates in tvssek
according to the phase of the corresponding literal. Thaiobd
data structure is a binary tree, similar to a search tree. cise
when there are no common variables is more complicated.

Example 2.Suppose<2 is a decision labeled with the lowest de-
cision level. B-cube 06(2 is represented by a set of certificates
=X AARE, o =X AxdAxE, andeg =X Axd At Af-
ter flipping x(l), solver can assign the supercubed variadgle At
that point we know that eitheg; or X3 or x need to be explored.
Whichever choice the solver makes, it might need to backieter
to that choice and try the remaining ones. Hence, it wouldrbela
tiway branching point. Having multiple choices, the solwauld
need some heuristic to determine the order of evaluatiomadti-
tion, choosing the next decision variable right of the ptyoqueue
might be a better option.

As there is no clear intuition about whether multiway nodesi\d
actually improve the performance and because multiway sace
not easily added atop of DPLL, an approximation of B-cubehnig
simply discard such literals.

If B-cube is approximated by a binary tree, the stem of the tre
clearly contains supercubed variables and correspondsuiper-
cube. As it has been proven [7], supercubing subsumes Plo/ Fr
the fact that approximation of B-cube contains all supeecuiier-
als as a stem it follows that the approximation also subsuPh&s

3.1 Boolean Constraint Trees

Boolean Constraint Trees (BCTs) are presented in thisseat
an approximation of B-cubes.

Definition 4. Boolean Constraint Treeis a binary tree, such
that branch nodes are labeled with a variable and have tvgo gt
edges. Literal nodes are labeled with a literal and have atgoe
ing edge. Any variable can appear at most once on a path frem th
root to a leaf. Given BCTC, the prefix of nodex is defined as a
cube of literals on the path from the root of the BCT to the node
and denoted ggrefc(x). Leaf node can be either a literal node or a
termination node. Termination notlés always a child of a branch
node and marks that there were at least two certificatestaining
cubeprefc(t), but no other common literals or variables.

There are two simplification rules for BCTs. Leaf branch node
doesn’t contain any useful information and can be discardée
second rule says that two adjacent branches cannot cormfaat e

SExcept for the nodes skipped over during CDB.

literals. Such literals must be inserted above the branthegsare
common to both paths.

Figure 1: Boolean Constraint Tree

Example 3.BCT C is given in Fig. 1. Shaded nodes are branch
nodes. Dotted edges dendi&LSE branches. Termination nodes
are depicted aX. Prefix of nodeeis prefc(e) = [j*,ht,il]. Literal
j1 was common to all certificates. Varialiiavas also common to
all certificates. Variablg was common to all the certificates that
includedh®, and so on.

The construction of BCTs goes as follows. The algorithm finds
the longest path in the currently constructed BCT on whicithal
literals correspond to the new certificate. The literals tieve no
match in the certificate are removed from the BCT and pushed on
stack. When a leaf node is reached, the algorithm checkshethet
there was at least one matching variable between thosenalied
literals, and creates a new branch if there was. Otherwisthea
literals from the stack get discarded. Hence, new nodesdateda
to a BCT only if a new branch is created. In all other casesingdd
a new certificate prunes the BCT.

it's skipped over, otherwise it's a conflict. When a branclenés
assigned, the edge to be followed is chosen depending oruthe ¢
rent assignment.

Our experiments show that the search procedure rarelyrtese
the entire BCT. Therefore, large BCTs just slow down the dgar
while the percentage of used nodes is low. This motivatesleur
cision to discard multiway nodes and set BCT growth limits.

Growth limit is empirically established value. If the nunniu
nodes in BCT is larger than the given limit, a special restiéc
construction mode is entered and new certificates do notaser
the size of the BCT.

B-cubing technique applies the knowledge gained from time co
flicts in the first branch to pruning the second adjacent branc
effectively partially solving both branches at once. Théngd
knowledge cannot be applied to different parts of the setrezh
Learning doesn’t have those limitations, but it is less @ffe in
pruning the search space locally.

4. HYPERSAT

Our experimental HyperSAT solver is based on modified Van
Gelder's watched literals scheme [19], extended to supgppriv-
alence clauses. Preprocessing eliminates unit and peral$t de-
tects tautologies and binary equivalences. Equivaleraigsek are
detected and reduced as described in [20, 21]. Clause cadtfie i
tially set to store %3 clauses, and enlarged as needed. 1-UIP learn-
ing scheme is used and deletion strategy is very aggredsatethe
clauses get deleted every time the cache is enlarged. Thsesla
to be deleted are chosen according to their size and numlmer of
currences in the conflicts. Larger clauses that appear fess are
deleted first. The solver is not randomized and it doesntifea
restarts. The weakest point of our solver is a very simplefeagt
ile implementation of VSIDS [13]. Also, only the preprocesand
BCP are optimized for performance so far. Our high priorityd
optimize other parts of HyperSAT, find a new heuristic whiches

BCTs can grow quite large. To reduce the memory requirements the specific search dynamics of the solver, and do the mengry o
and speed up the BCT construction process, we set the limit on timization.

the maximum number of nodes that a BCT can contain. Setting

the limit is achieved by disallowing the creation of new lutaes,
while BCT pruning is still allowed as it always reduces theespf
BCT. The limit for our experiments was set to 2000 nodes.
B-cubing interacts with decision heuristic and learningyp&-
cubed literals are always welcome, as they increase thabildip
of creation of new unit literals and do not create new brasdhe
the search tree. Suppose that the search procedure haseassig
all the supercubed and implied literals, and has reachedrchr
node, say, in BCT. According to our heuristic, search will choose
the more constrained branch by checking the next couple of

5. EXPERIMENTAL RESULTS

We have chosen eight benchmark sets for empirical evaluatio
of our new pruning technique. The number of instances in sath
is given in parentheses after the name of the set. PicoJstemies
result from Bounded Model Checking (BMC) of Sun PicoJaV¥Il
microprocessor. Instances are generated by scripts whijtden
McMillan. Second set (IBM BMC) is encoding of BMC of real in-
dustrial hardware designs. The third set contains well knber-
rel, longmult, and queueinvar BMC benchmarks from CMU. The

nodes. In the case when BCT is very branchy, none of the nodesfollowing three sets are all from Fadi Aloul and represenT ®A-

that follow will actually prune the search space. Even wojsst
picking the next variable with the highest priority mightrfoem
better. For that reason, we also set the limit on the maximem p

codings of FPGA routing and integer factorization problerfike
seventh set is SAT encoding of Constraint Satisfaction IBrod
(CSP). Only three subsetsr (30, 35, 40) were used from the en-

centage of branch nodes in BCT. The limit was set to 40% for our tire set, as no solver could solve the remaining ones. Theéass

experiments.

3.2 Search Space Pruning

rul e_1 subset from IBM Formal Verification Benchmarks Library
withoutk100 instances.
All experiments were done on 2.6 GHz Pentium 4 with 3 Gb of

BCT can be seen as a blueprint of the search space that needsnemory. ZChaff Il version 2004.5.13 running times are gif@n

to be explored. Suppose the search has just flipped a deeistbn
that that assignment generated certain number of unialgetnit
literals will be propagated first and then, if no conflict isifd, the
search procedure will traverse the corresponding BCT, qgap
ing newly generated unit literals after assigning each nédbeen
traversing BCT, the search procedure might run into nodegred
as unit literals. If it is a literal node matching currentigasnent,

comparison.

The timeout was set to 3600 sec. Results are shown in Table 1.
The number of timeouts is in parentheses following the total
time. HyperSAT with B-cubing is denoted as BCT and the versio
that implements only supercubing as SC.

5.1 Discussion

Benchmark Set Instances ZChaff Il HyperSAT (BCT) | HyperSAT (SC)
1. PicoJava BMC (76) all 10756 (2) | 16963 (2) 19952 (5)
2. IBM BMC (13) all 78 118 117

3. CMU BMC (34) all 7711 1310 1360

4. FPGA UNS (10) all 7993 (1) | 30271 (V) 32771 (8)
5. FPGA SAT (11) all 11 0.33 0.23

6. Int Fact (29) all 58887 (12)| 17634 21789 (2)
7. CSP (15) frb30,frb35,frb40 18130 (4) 4154 4246

8. IBM FVS (209) rule_1, except k100 268440 (71)| 273036 (71) 274414 (74)

Table 1: Experimental Results

Evaluation of any module (eg. decision heuristic, learsicigeme,. ..)new solver is slightly more robust, suffering fewer timeoover
of a SAT solver is a difficult task as it is hard to extract exatr- the benchmark runs. Having a new approach that is competitiv
mation about the influence of that particular module on treraiV/ with, but with different strengths than, the best existipgr@aches
performance from the background noise created by other leedu allows solving problems that would otherwise be unsolvable

and their interactions. Future work includes continued engineering and optinmareatif
In most cases, the new technique seems to be effective.rPerfo the solver itself, as well as exploring ways to approximateuBing
mance is comparable to the latest version of ZChaff, wittheacl more accurately and/or more efficiently.

significantly outperforming the other on some instancespéty
SAT has fewer timeouts. B-cubing doesn’t seem to be paatityul 7. REFERENCES
effective on IBM BMC Benchmarks. We believe that the reason
is that our greedy heuristic often makes better decisiosslting
in faster convergence to a conflict than what can be achieyed b
choosing a BCT branch node as a new decision.

HyperSAT performs significantly better on CMU BMC, integer
factorization, and CSP problem sets.

[1] D. Babic and A. J. Hu. Integration of Supercubing and
Learning in a SAT Solver. Idsia South Pacific Design
Automation Conferen¢c@005. To appear.

[2] A.Bhalla, I. Lynce, J. de Sousa, and J. Marques-Silva.
Heuristic backtracking algorithms for SAProceedings. 4th
International Workshop on Microprocessor Test and

Benchmark | Decisions| Avg. Imp. Chain Len. Verification: Common Challenges and Solutioppages 69—
30.cnf+ BCT 8708 354 74, 2003' . . -
30.cnf+ SC 18401 57 [3] A. Blere_, A. Cimatti, E._M. Clarke, M. Fujita, and Y Zhu.
57 enf+ BCT 945 104 Symbolic model c_hecklng using SAT procedures instead of
57 cnf ¥ SC 1039 102 BDD_s. In Procee_dlngs of the 36th ACM/IEEE conference on
. Design automationpages 317-320. ACM Press, 1999.

[4] R. E. Bryant. Graph-based algorithms for boolean fuorcti

Table 2: Number of ision
able 2: Number of decisions manipulation]EEE Trans. Comput35(8):677—691, 1986.

The number of decisions is typically smaller for HyperSATwi [5] M. Davis and H. Putnam. A Computing Procedure for
BCTs while the average length of implication chains is agpro Quantification Theoryd. ACM 7(3):201-215, 1960.
mately the same. Two examples of typical values for two bench [6] D.-Z. Du and K. Ko.Theory of Computational Complexity
marks from PicoJav&! set are given in Table 2. The gain achieved John Wiley and Sons, 2000.
by reducing the number of decisions is dampened by additiona [7] E. Goldberg, M. R. Prasad, and R. K. Brayton. Using
computation time required for constructing BCTs. Curngrdbn- Problem Symmetry in Search Based Satisfiability
struction is implemented through a series of complex réeifanc- Algorithms. InProceedings of the conference on Design,
tions. We expect better results after a thorough optinonatf Automation, and Test in Europpages 134-142, 2002.
BCT algorithms. [8] J. N. Hooker and V. Vinay. Branching rules for satisfidlil

Timeouts on scatter plots in Fig. 2 are placed on the border li Journal of Automated Reasoninth(3):359-383, 1995.
Results are particularly interesting for IBM FVS set, whérés [9] S.ichi Minato. Zero-suppressed bdds for set manipoigit
obvious that HyperSAT is faster on most smaller instanoetspér- combinatorial problems. IRroceedings of the 30th
forms worse on some larger ones. From extensive experiments international conference on Design automatipages
did, it seems that the reason is our aggressive clauseatekdtat- 272-277. ACM Press, 1993.
egy. Adapting the clause deletion heuristic decreased \thealth [10] C. M. Li and Anbulagan. Heuristics Based on Unit
performance of the solver, but improved the behaviour ogefar Propagation for Satisfiability Problems. IGCAI (1), pages
instances. 366-371, 1997.

[11] J. P. Marques-Silva and K. A. Sakallah. GRASP: A Search
6. CONCLUSIONS Algorithm for Propositional Satisfiabilityf EEE Trans.

We have introduced B-cubing, a powerful new search-spaae pr Comput, 48(5):506-521, 1999.
ing technique, and have shown how to implement a practical SA [12] K. L. McMillan. Interpolation and SAT-based model
solver based on B-cubing, using Binary Constraint Trees.r Ou checking. INCAV 03: Computer-Aided Verification, LNCS
prototype implementation HyperSAT, despite being a prielary, 2725 pages 1-13. Springer, 2003.
not-fully-optimized program and despite using complewifjer- [13] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and
ent search-space pruning, is competitive with the latestioe of S. Malik. Chaff: engineering an efficient SAT solver. In

ZChaff, one of the best state-of-the-art solvers. Furtleemour Proceedings of the Design Automation Conferempeges

1000

HyperSAT
@
AR
HyperSAT

L)
o

HyperSAT

0.1

a
6o
o

01

1 10 100 1000 timeout 01 01 1 10 0.01 0.1 1 10 100 1000
ZChaff ZChaff ZChaff
(a) PicoJavi (b) 1IBM BMC (c) CMU BMC
o ot
100 100 ®
=
5] (</E) 5} ¢
@ o <
% 10 19} o @ 10
M 0, 15
o 5 (é)_‘
& o) 0.1 &
o ==
1 1
0.1 01
o
0.01 0.01 0.01
0.01 0.1 1 10 100 1000 timeout 0.01 0.1 1 0.01 01 1 10 100 1000 timeout it
ZChaff ZChaff ZChaff
(d) FPGA SAT (e) FPGA UNS

timeout

(f) INT FACT

1000

timeout

1000

100

HyperSAT

HyperSAT

001

001 100 1000 timeout

1 10
ZChaff

(g) CSP

001
001

01 1 10
ZChaff

(h) IBM FVS

Figure 2: Scatter plots

530-535. ACM Press, 2001.

A. Nadel. Backtrack Search Algorithms for Proposiibn

Logic Satisfiability: Review and Innovations. Master’s

thesis, Tel-Aviv University, 2002.

G. Nam, K. Sakallah, and R. Rutenbar. A boolean

satisfiability-based incremental rerouting approach with

application to FPGAs. IiProceedings of the conference on

Design, Automation and Test in Eurgages 560-565.

|IEEE Press, 2001.

M. R. PrasadPropositional Satisfiability Algorithms in EDA

Applications PhD thesis, University of California at

Berkeley, 2001.

L. Ryan. Efficient algortihtms for clause-learning SAT

solvers. Master’s thesis, Simon Fraser University, 2004.

P. Stephan, R. Brayton, and A. Sangiovanni-Vincentell

Combinational test generation using satisfiabiliBEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systemd45(9):1167-1176, Sept 1996.

[19] A. Van Gelder. Generalizations of Watched Literals for
Backtracking Search. IBeventh Int'l Symposium on Al and
MathematicsFt. Lauderdale, FL, 2002.

[14]

[15]

[16]

[17]

[18]

[20] J. P. Warners and H. Van-Maaren. A two phase algorithm fo
solving a class of hard satisfiability problen@perations
Research letter23:81-88, 1998.

J. P. Warners and H. van Maaren. Recognition of traetabl
satisfiability problems through balanced polynomial
representations. IRroceedings of the 5th Twente workshop
on on Graphs and combinatorial optimizatigmages
229-244. Elsevier Science Publishers B. V., 2000.

H. Zhang and M. E. Stickel. An efficient Algorithm for Uni
Propagation. IfProceedings of the Fourth International
Symposium on Artificial Intelligence and Mathematics
(AI-MATH’96), Fort Lauderdale (Florida USA), 1996.

L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik.
Efficient conflict driven learning in a boolean satisfialilit
solver. InProceedings of the International Conference on
Computer-aided Desigipages 279-285. IEEE Press, 2001.
L. Zhang and S. Malik. The quest for efficient boolean
satisfiability solvers. IfProceedings of the 18th International
Conference on Automated Deductipages 295-313.
Springer-Verlag, 2002.

[21]

[22]

(23]

[24]

