
Sigma*: Symbolic Learning of Input-Output Specifications

Matko Botinčan
University of Cambridge

matko.botincan@cl.cam.ac.uk

Domagoj Babić ∗

Facebook, Inc.
babic@eecs.berkeley.edu

Abstract
We present Sigma∗, a novel technique for learning symbolic mod-
els of software behavior. Sigma∗ addresses the challenge of synthe-
sizing models of software by using symbolic conjectures and ab-
straction. By combining dynamic symbolic execution to discover
symbolic input-output steps of the programs and counterexam-
ple guided abstraction refinement to over-approximate program
behavior, Sigma∗ transforms arbitrary source representation of
programs into faithful input-output models. We define a class of
stream filters—programs that process streams of data items—for
which Sigma∗ converges to a complete model if abstraction refine-
ment eventually builds up a sufficiently strong abstraction. In other
words, Sigma∗ is complete relative to abstraction. To represent in-
ferred symbolic models, we use a variant of symbolic transducers
that can be effectively composed and equivalence checked. Thus,
Sigma∗ enables fully automatic analysis of behavioral properties
such as commutativity, reversibility and idempotence, which is
useful for web sanitizer verification and stream programs compiler
optimizations, as we show experimentally. We also show how mod-
els inferred by Sigma∗ can boost performance of stream programs
by parallelized code generation.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software Verification—Formal methods; D.3.4 [Program-
ming Languages]: Processors—Optimization

General Terms Languages, Theory, Verification

Keywords Inductive learning, Specification synthesis, Behavioral
properties, Equivalence checking, Stream programs, Compiler op-
timization, Parallelization

1. Introduction
Modern software systems often process large amounts of data in a
stream-like fashion. By streams, we mean sequences of data items,
processed in some order. Such stream processing is inherent to
many domains such as digital signal processing, embedded applica-
tions, network event processing, financial applications, web appli-
cations, and even to common desktop software. Likewise, big-data
services running on a cloud often continuously process streams of
moving data and batches of past data.

∗ This work was done while the second author was with UC Berkeley.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’13, January 23–25, 2013, Rome, Italy.
Copyright c© 2013 ACM 978-1-4503-1832-7/13/01. . . $10.00

We focus on a simple notion of programs that applies to many of
these systems, called a filter. Filters are typically small fragments
of code, but they facilitate large scale stream-processing [15, 18,
23, 26, 29, 32, 54]. A filter iteratively reads a bounded number of
items from an input stream at once, performs some computation
on those items, and writes the results to an output stream. Filters
exchange data via stream(s) with other parts of the program, and
can also be glued together into more complex structures. Unfortu-
nately, reasoning about even these relatively simplistic programs is
difficult as their low-level implementation details often obscure the
high-level input-output behavior that we want to reason about.

Our aim is to provide ways for automated analysis of the input-
output behavior of programs such as stream filters. Although the
internal implementation of such programs may be rather delicate,
many of their properties rely solely on their input-output behavior.
To exemplify a couple of such properties, let us consider intention-
ally simple filters P and P ′ (coming from, say, two revisions of the
code or from two different vendors), that implement a difference
encoder (used in, e.g., JPEG compression [53]):1

P

out(peek(0));
while (true) {
out(peek(1)−peek(0));
in ();
}

P ′

state = 0;
while (true) {
out(peek(0)−state);
state = in();

}

P and P ′ are syntactically different and have different operational
semantics but they exhibit the same input-output behavior. Behav-
ioral equivalence of P and P ′ ensures that the two implementations
can be used interchangeably—for instance, a behaviorally equiva-
lent stateless (or with few states) implementation might be prefer-
able over a stateful (or with many states) one, as the former can be
made amenable to data-parallel execution by a simple replication.
For another property, consider a filter Q that looks like P but in-
stead of the difference calculates the sum of the two consecutive
values. If we connect P ’s output stream to Q’s input stream in a
pipeline then the resulting composition will have the same behav-
ior as if we were to connect Q’s output to P ’s input. Knowing that
P andQ are commutative with respect to each other we can reorder
them (e.g., for performance reasons) without affecting the behavior
of the pipeline.

In this paper, we present a technique called Σ∗ that enables au-
tomated analyses of input-output properties of programs by learn-
ing. Σ∗ uses dynamic symbolic execution [16, 28, 49] to dis-
cover symbolic input-output steps of a program, and counterex-
ample guided abstraction refinement [7, 20] to over-approximate
program behavior, and combines the two techniques into a sound
and complete (relative to abstraction) symbolic learning algorithm.
Σ∗ works on the control-flow graph without assuming any specific

1 In these code snippets, function out() writes a data item to the output
stream, peek() returns the item at the given offset in the input stream
without consuming it, and in () consumes and returns the current item from
the input stream.

Figure 1: The Design of Σ∗. Arrows indicate the data flow.

syntactic structure of the program and, by learning, synthesizes
a faithful symbolic model of program behavior. It represents the
models using a variant of symbolic transducers (STs) [14], which
generalize classical finite-state machines by allowing transitions la-
beled with arbitrary predicates as input guards and terms as out-
put. Assuming formulae from a decidable theory, STs can be ef-
fectively composed and equivalence-checked, enabling analysis of
various behavioral properties such as commutativity, reversibility,
and idempotence.

Σ∗ targets applications beyond just verification. As we show,
Σ∗ enables domain-specific compiler optimizations (e.g., filter fu-
sion and reordering [2, 45]) for a wider class of stream programs
than currently possible. Also, STs inferred by Σ∗ lend themselves
to vectorized implementation (e.g., by utilising SIMD instruc-
tions [57], GPU architecture [15, 56] or field-programmable gate
arrays [35, 39]) and data-parallel execution (e.g., by replication or
using speculative techniques such as [48]).

Overview of Σ∗. In a nutshell, Σ∗ can be seen as an extension of
Angluin’s L∗ automata-learning algorithm [5] to learning models
of programs. L∗, designed to learn regular languages in a black-
box manner, is not applicable to the general software setting for
two reasons. Firstly, L∗ requires a priori knowledge of the concrete
alphabet of the language. While that fits certain scenarios (such as
inference of component interfaces [4, 27, 51], where the alphabet
corresponds to the set of component’s methods), the exact alpha-
bet of software internals (including, for instance, all values that
arise during the execution) is hard to specify in advance. Even if
known, such alphabets are typically large (or practically infinite),
so treating them concretely as in L∗ hinders scalability. Secondly,
L∗ merely conjectures the inferred model and to check the conjec-
ture relies upon an oracle (a teacher) that can answer equivalence
queries. An omniscient oracle for equivalence checking against
software artifacts is, however, computationally intractable.

Therefore, Σ∗ is built around two key ideas:

1. Σ∗ uses dynamic symbolic execution to discover constraints
on input values (path predicates) and terms generating output
values, and builds symbolic alphabet out of these. By using
symbolic alphabets to represent equivalence classes of input-
output steps, Σ∗ enables discovery of complete input-output
behavior independently of the concrete alphabet size.

2. Instead of equivalence checking against the program, Σ∗ builds
an abstraction that is a finite-state symbolic over-approximation
of program behavior that we wish to learn. Checking equiva-
lence of (deterministic) symbolic conjectures and such (possi-
bly non-deterministic) over-approximations can be done algo-
rithmically. Σ∗ implements an algorithm that either generates
a separating sequence (counterexample) showing how the con-
jecture and abstraction differ, or proves they are equivalent.

Starting with the trivial symbolic conjecture and the coarsest
abstraction, Σ∗ iteratively refines the conjecture or the abstraction
until the two become equivalent (see Figure 1). If the counterexam-
ple returned by the equivalence checking algorithm is spurious (i.e.,
the program does not produce the same sequence of outputs as the
abstraction), we refine the abstraction. Otherwise, the counterex-
ample represents a behavior that the conjecture failed to capture,
and we refine the conjecture. Upon termination, the final conjec-
ture is in a certain sense minimal behaviorally equivalent model of
the program.

The symbolic conjecture maintained by Σ∗ is a variant of sym-
bolic finite-state transducers [14] that we call symbolic lookback
transducers (SLTs). To generate outputs, SLTs use a sliding win-
dow over a bounded number of past inputs (SLTs can also be
augmented with lookahead to allow peeking of incoming inputs).
Along with conjectures, we also synthesize over-approximations of
program behavior in the form of SLTs. We use predicate abstrac-
tion [7, 30] to abstract away the internal control flow of a program,
however, in doing so we keep the input-output data flow intact.
We then transform the obtained abstraction into an equivalent non-
deterministic SLT. To check equivalence of the conjecture and the
over-approximation, we use our algorithm for equivalence check-
ing of a deterministic and non-deterministic SLT.

The main technical result of the paper is that Σ∗ is relatively
complete with respect to the abstraction. Assuming that the pro-
gram behavior can be represented with an SLT, Σ∗ terminates with
an SLT behaviorally equivalent to the program if the overapproxi-
mation scheme eventually produces an inductive invariant implying
the program’s input-output relation. Since synthesis of the overap-
proximating SLT is guided by abstraction refinement, relative com-
pleteness of Σ∗ is conditioned by completeness of the predicate
selection method in refinement of the predicate abstraction [9, 42].

Other classes of program behavior could be learned by varying
the type of symbolic conjectures. For programs whose behavior
cannot be represented within the given class of symbolic models,
Σ∗ will end up conjecturing more refined models ad infinitum.
However, if Σ∗ is interrupted before convergence, the conjecture
is guaranteed to be correct up to the explored depth.

Applications. To demonstrate practical utility of Σ∗, we report
three experimental studies conducted with our implementation:

• Web Sanitizers Verification. We analyzed sanitizers from Google
AutoEscape web sanitization framework and found out that
86% of them (12 out of 14) can be represented as SLTs. Σ∗

successfully inferred all 12 sanitizers fully automatically, en-
abling their further analysis with systems such as Bek [37].
• Stream Filter Optimization. We applied Σ∗ to infer filters from

various stream processing applications [18, 23, 33, 45, 54]. We
show how Σ∗ enables optimizations such as reordering and
fusion that are not possible with the current state-of-the-art.
• Parallelization. We show how SLT models of filters enable au-

tomated parallelization. From a variety of SLTs, we generated
SIMD implementations using Intel SSE intrinsics and GPU im-
plementations using NVIDIA CUDA, and obtained speedups of
up to 3.89 against the most optimized gcc code.

Contributions. We claim the following contributions.

• Symbolic Learning Framework Σ∗. We present an automated
learning framework Σ∗ for learning symbolic models of pro-
grams’s input-output behavior. The key insight behind Σ∗, be-
sides use of symbolic alphabets to represent program steps, is
use of over-approximation to detect convergence.
• Symbolic Lookback Transducers. We introduce a carefully lim-

ited variant of symbolic transducers that is amenable to learning

prev = 0; cur = 0; i = 0;
while (true) {

cur = peek(0);
if (i < 2) out(cur);
else

if (cur < prev) out(cur + prev);
else out(cur − prev);

prev = in();
i++;

}

Figure 2: Code Snippet for the Running Example in §2.

true/λ0

(a) C1

true/λ0 true/λ0

λ0 ≥ λ−1/λ0 − λ−1

λ0 < λ−1/λ0 + λ−1

(b) C2

true/λ0

true/λ0 + λ−1

true/λ0 − λ−1

(c) A1

true/λ0 true/λ0

true/λ0 + λ−1

true/λ0 − λ−1

(d) A2

Figure 3: Conjectures and Abstractions for the Example in Figure 2.

and develop an equivalence checking algorithm. We experimen-
tally show that SLTs are useful in practice through three case
studies, two of which demonstrate novel use of transducers.
• Synthesis of Over-approximations. We show how to transform

predicate abstraction of a program into an SLT over-approxi-
mating the program behavior, and how to refine it. The key step
of the synthesis is finitization of the unabstracted components
of states that correspond to the input-output flow.
• Relative Completeness. Our main technical result is that Σ∗

converges to a sound and complete model of SLT programs,
as long as the abstraction refinement eventually builds a strong
enough set of predicates. Effectively, this result reduces the
completeness of learning to the completeness of abstraction.

2. Σ∗ Illustrated by Example
We begin by showing how Σ∗ works on the example given in Fig-
ure 2. The program reads input in an infinite loop using commands
peek() and in (); peek(0) reads the current input symbol and leaves
it in the input stream, while in () reads the current input symbol
and moves onto the next one. Both commands halt if there is no
more input to read. In the first two iterations, the program prints
the last read symbol (using command out), and in every subsequent
iteration it outputs the sum or difference of the last two symbols,
depending on their relative ordering.

We represent learned conjectures and synthesized abstractions
in the example as SLTs with lookback 1. Each transition is labeled
by a symbolic predicate-term pair of the form p/t. The transition is
taken when the predicate p evaluates to true for a given sequence
of concrete input symbols. The term t describes the computed
output. Predicates and terms are expressions over input symbols
and constants. We use λ0 to denote the current symbol and λ−i to
denote symbols read i transitions before. SLTs with lookback k are
allowed to read only the current and the last k symbols.

We use (dynamic) symbolic execution [16, 28, 49] to gather
sequences of predicates and output terms occurring along the paths
in the program execution. For instance, given an input of length
four, a possible execution might take twice the then branch of
the first if, then the else branch of the second if, and finally the
then branch of the second if. For that execution we would obtain a
predicate sequence (the path condition) ~p = true · true · (cur3 ≥
prev2) · (cur4 < prev3), and an output sequence ~t = cur1 · cur2 ·
(cur3 − prev2) · (cur4 + prev3). In sequences such as ~p and ~t, we
use “·” to denote the concatenation operator.

To obtain predicates and output terms formulated with regard
to the input, we relativize all references of variables in ~p and ~t so
that they become expressed with respect to the current position in
the input stream. For instance, the relativized version of ~p would be
the sequence true · true · (λ0 ≥ λ−1) · (λ0 < λ−1), and of ~t, the
sequence λ0 ·λ0 · (λ0−λ−1) · (λ0 +λ1). As for SLTs, the variable
λ−j in each element ~p|i of the sequences above corresponds to
the input symbol j positions before the current position (i) in the
input stream. Thus, e.g., λ0 in the third and fourth element of the
sequences correspond to the last two symbols read by the program.
To generate a concrete input from relativized path conditions, we
need to derelativize them and pass the derelativized formula to an
SMT solver. In the case above, the solver might return a concrete
sequence 0 · 1 · 3 · 2 satisfying the relativized path condition.

Σ∗ begins processing the example by learning the first conjec-
ture C1 (Figure 3a), and compares it against predicate abstraction
A1 of the program with respect to an empty set of predicates (Fig-
ure 3c). Note that, unlike in the classic predicate abstraction, we
keep the input-output data flow intact. Equivalence checking of C1

and A1 produces the first symbolic counterexample, say a predi-
cate ~p1 = true and output ~t1 = (λ0 + λ−1), which is a behavior
captured by the abstraction, but not the conjecture. Any concrete
sequence satisfying those two formulae is a concrete counterexam-
ple. For example, take input λ−1 = 1, λ0 = 1. The program will
produce output λ0 for that input without reading λ−1, showing that
~p1/~t1 is spurious because symbolic outputs do not match. We re-
fine the abstraction with respect to a new set of predicates, obtained
by some predicate selection method (e.g., by taking atomic predi-
cates in the weakest precondition computed along the path [6]).
Suppose such method returns {i = 0, i ≥ 2} at this instance. The
refined abstractionA2 is shown in Figure 3d. Equivalence checking
of A2 and C1 produces the second symbolic counterexample, say
~p2 = true·true·true and~t2 = λ0 ·λ0 ·(λ0−λ−1). Any sequence of
three symbols will satisfy ~p2 and it turns out that counterexample
is not spurious. Thus, we have to refine the conjecture.

After processing the counterexample, Σ∗ learns conjecture C2

shown in Figure 3b. C2 is correct, but Σ∗ does not know that
yet, because equivalence checking of C2 and A2 returns the third
counterexample, say ~p3 = true · true · (λ0 < λ−1) and ~t3 =
λ0 · λ0 · (λ0 + λ1). The third counterexample is not spurious
either. Thus, once again, we need to refine the abstraction. Using
the same method for refinement as above, we extend the set of
predicates with λ0 < λ−1. Predicate abstraction computes A3,
which is equivalent to C2, and the process terminates, faithfully
inferring the program’s input-output relation, i.e., the specification
of program’s input-output behavior.

For the following example with nested loops, Σ∗ terminates
inferring a SLT with lookback 0, shown on the right.

while (true) {
x = in();
while (x != ’a’) {

x = in();
out(x);

}
}

λ0 = a/ε λ0 6= a/λ0

λ0 6= a/ε

λ0 = a/λ0

3. Transductive Programs
We now turn to the formal development of Σ∗. In this section, we
formalize the syntax and semantics of programs that transform an
input stream into an output stream of symbols. Behavior of cer-
tain such programs can be represented by SLTs (§4). We also for-
mally define concepts associated with the dynamic symbolic exe-
cution, which we use in development of over-approximations (§5)
and learning (§6). To simplify exposition, henceforth we assume
programs working with streams of integers.

3.1 Preliminaries
Let Z be the set of integers, N = {i ∈ Z | i > 0} the set of
naturals, and B = {false, true} the set of booleans. For a setD, we
denote by D∗ the free monoid generated by D with concatenation
as the operation and the empty word ε as identity. We refer to
words in D∗ as sequences. Sequences of predicates (resp. terms)
we denote by ~p = p1 · · · pm (resp. t = t1 · · · tn). For sequences
of sequences of terms, we write ~t. We denote the length of ~p by
|~p|, the i-th element of ~p by ~p|i and the subsequence pi · · · pi+k by
~p|[i,i+k]. For f : D → C andD′ ⊆ D, we write f |D′ to denote the
restriction of f onD′. For~a and~b such that n , |~a| = |~b|, we write
f [~a← ~b] to denote the function f ′ such that for all i ∈ {1, . . . , n},
f ′(~a|i) = ~b|i and for all x /∈ {~a|1, . . . ,~a|n}, f ′(x) = f(x). We
use t[x 7→ y] to denote the term obtained from t by simultaneously
replacing all free occurrences of x with y. Vars(t) denotes the set
of all free variables in t.

3.2 Syntactic Representation
We first define syntactic representation of programs. Let V be the
set of program variables. Expressions (terms) Exp[V], predicates
BExp[V], and atomic commands Cmd [V] over V are given by:

e ::= k | x | f(e) | . . . ∈ Exp[V]
b ::= false | true | ¬b | b ∧ b | b ∨ b |

e = e | e 6= e | R(e) | . . . ∈ BExp[V]
c ::= assume(b) | x := e | x := peek(k) |

x := in() | out(e) ∈ Cmd [V]

where k ∈ Z, x ∈ V, while f and R are constructors for terms
and predicates. As long as the quantifier-free theory of Exp[V]
with equality and satisfiability of BExp[V] are decidable, par-
ticular details of the grammar are not important. The command
x := peek(k) reads a data item at offset k from the current symbol
in the input stream and stores the item to x if the input is avail-
able, otherwise it causes the program to halt. The in() command
works like peek(0) but in addition consumes the item from the in-
put stream and moves onto the next input symbol. The command
out(e) writes the value of e to the output stream.

We represent programs using control-flow automata [36] over
the language of atomic commands. The control-flow automaton is
determined by a set of control nodes N containing a distinguished
node sN ∈ N representing the starting point of the program and
a function succ : N × Cmd [V] ⇀ N representing labeled edges.
All nodes either have a single successor or have all outgoing edges
labeled with a label of the form assume(b). In the latter case, we

JkKσ = k

JxKσ
.
=

 σ(x) if x ∈ V,
x if x ∈ VI,
undefined otherwise

Jf(e)Kσ
.
= f(Je1Kσ, . . . , JenKσ)

Figure 4: Symbolic Evaluation of Expressions.

(n, σ, ρ, ı, )
assume(b)
 (n′, σ, ρ, ı, )

(n, σ, ρ, ı, )
x:=e
 (n′, σ[x← JeKσ], ρ, ı, )

(n, σ, ρ, ı, )
x:=peek(k)
 (n′, σ[x← Jinı+kKσ], ρ, ı, )

(n, σ, ρ, ı, )
x:=in()
 (n′, σ[x← JinıKσ], ρ, ı+ 1, )

(n, σ, ρ, ı, )
out(e)
 (n′, σ, ρ[out ← JeKσ], ı, + 1)

Figure 5: Symbolic Semantics of Commands.

assume that all corresponding predicates b are mutually exclusive
and that their disjunction is a tautology.

3.3 Symbolic Semantics
Given a program P we now define its symbolic semantics. We
formalize the contents of the input and the output stream with
sets of variables VI , {in1, in2, . . .} (in-variables) and VO ,
{out1, out2, . . .} (out-variables), respectively. On a particular run
of P , all except finitely many of these variables are undefined, and
for those which are defined, inı corresponds to the ı-th element of
the input stream, and out to the -th element of the output stream.
By ~in we refer to the sequence of in-variables in1in2 . . . and we
use `in to denote the length of the data sequence in the input stream.

We evaluate expressions on a memory σ ∈ Mem , V ⇀
Exp[VI] as indicated in Figure 4. We execute commands on states
of the form State , N × Mem × OutStr × N × N. The third
component, OutStr , VO ⇀ Exp[VI], represents the symbols in
the output stream. The last two components of the state, the in-
index and the out-index, store indices of the current element in
the input stream and the output stream, respectively. We denote the
components of a state s ∈ State by s.n, s.σ, s.ρ, s.ı, and s.,
respectively. The initial state is s0 = (sN, ∅, ∅, 1, 1).

We represent the symbolic semantics of P by a labeled tran-
sition system (LTS) T = (State, C,) with State as the set of
states, C ⊆ Cmd [V] as the finite set of labels, and as the la-
beled transition relation. The relation ⊆ State × C × State is
defined by the rules given in Figure 5, showing the effect of each
command on a state. In each rule we have n′ = succ(n, c). We
write s c

 s′ to denote the transition (s, c, s′) ∈ .

3.4 Dynamic Symbolic Traces, Path Predicates and Outputs
The LTS T encodes the symbolic semantics of P with respect to
any input. Given a concrete input ~a ∈ Z∗, we can construct a
sequence of states in T representing the (dynamic) symbolic trace
of P driven by ~a, as in [16, 28, 49]. We start with the initial state
s0 and at each step we follow the transition si

c
 si+1, such that if

c is of the form assume(b) then b is true in si.σ[~in← ~a]. We stop
if we ever reach a state sf , which we call ending, such that the in-

index sf .ı equals `in + 1 or sf has an outgoing
:=peek(k)
 -transition

with k such that sf .ı + k > `in. We define the symbolic trace of

P on input ~a, denoted τP(~a), as the finite sequence s0s1 . . . sf
if an ending state is reached, or as the infinite sequence s0s1 . . .
otherwise.

We refer to a state si as in-state if si = s0, si = sf or the

incoming transition reads an input symbol, i.e., si−1
:=in()
 si. Let

τ inP(~a) , s̃0s̃1 . . . s̃n be the sequence of in-states from τP(~a). We
define big-step transition as a transition between two successive
states in τ inP(~a). For 1 ≤ i ≤ n, let pi be the conjunction of
predicates b of the form assume(b) encountered on all transitions

between s̃i−1 and s̃i. In case no
assume()
 -transitions exist between

s̃i−1 and s̃i we set pi to true. Furthermore, for 1 ≤ i ≤ n, let ti
be the sequence of symbolic outputs (as written to out-variables by
out()
 -transitions) between s̃i−1 and s̃i. If no output is generated we

set ti to ε.
We define path predicates of P on input ~a as the sequence

πP(~a) , p1 · · · pn. Analogously, we define the symbolic output
of P on ~a by θP(~a) , t1 · · · tn. The concrete output of P on ~a is
defined by γP(~a) , θP(~a)[~in 7→ ~a].

3.5 Transductive and k-lookback Programs
In order to be able to learn program behavior, we have to make
some assumptions about programs. Firstly, when considering the
input-output behavior of a program, no path in a program should
end up in a loop without reading an input, i.e., we will not allow in-
finite periods of silence during which the program would not read
any input. This first assumption will allow us to extend incomplete
conjectures of program behavior with new big-step transitions. Sec-
ondly, we will assume that programs produce uniformly bounded
number of output symbols per each big-step transition. This second
assumption is inherent to symbolic transducers [14], on which we
base SLTs (§4), the model of program behaviour used in Σ∗.

More formally, let T be the LTS of P and ξ any symbolic trace
in T starting with s0 and ending with an in-state. Let us denote

by #in(ξ) the number of
:=in()
 -transitions in ξ and by #out(ξ)

the number of
out()
 -transitions in ξ. We say that P is transductive

if there are no infinite symbolic traces in T with only finitely
many in-states, and there exists M ∈ N such that for every ξ
as above we have #out(ξ) < M · #in(ξ). As a consequence,
if P is transductive then for every input ~a, τP(~a) is finite and
|θP(~a)| = |γP(~a)| < M · |~a|.

Besides transductiveness, we impose an additional require-
ment that is specific to the type of transducers that we use to
represent program behavior in Σ∗, but that could be relaxed if
we would use more expressive models (such as, e.g., transduc-
ers with registers [3, 14]). This additional requirement asks that
transductive programs produce outputs from a bounded number of
inputs in the past. More formally, we say that P is k-lookback if

P is transductive and for every ξ as above, each
out(e)
 -transition

in ξ depends only on previous k inputs, i.e., if s
out(e)
 s′ then

Vars(JeKs.σ) ⊆ {ins.ı−k, . . . , ins.ı}. In §5 and §6 we focus on a
class of k-lookback programs whose behavior can be represented
with SLTs.

3.6 Input Relativization
In development of over-approximations (§5) and the learning algo-
rithm (§6), we will need to rephrase symbolic expressions pertain-
ing to program states so that they use the offset from the current
position in the input stream rather than from the beginning. We
show how to relativize these expressions so that the offset becomes
relative to the current in-index.

Let Vλ , {. . . , λ−1, λ0, λ1, . . .} be an infinite set of λ-
variables, indexed by a relative offset. We use λ-variables so that

λ0 stands for the current symbol in the input stream, λ−i for the
symbol i positions back and λi for the symbol i positions ahead.
Let ~in ı7−→ ~λ denote a variable substitution that maps each in-
variable in to λ-variable λ−ı. We define relativization of a state
s = (n, σ, ρ, ı, ) by Λ(s) , (n, σ[~in

ı7−→ ~λ], ρ[~in
ı7−→ ~λ], ). In-

tuitively, Λ(s) relativizes symbolic expressions in s with respect
to the current in-index. For general transductive programs, expres-
sions in σ- and ρ-components of Λ(s) may use unboundedly many
λ-variables as the expressions can refer to inputs from arbitrary
far in the past. However, k-lookback programs use only up to k
λ-variables with negative index, namely, λ−k, . . . , λ−1.

4. Symbolic Transducers with Lookback
In the last section, we formalized the syntax and semantics of pro-
grams. In this section, we introduce symbolic lookback transducers
(SLTs) with a constructive equivalence checking algorithm. We use
SLTs to represent synthesized over-approximations (§5) and sym-
bolic conjectures in the learning algorithm (§6).

4.1 Background
Finite-state transducers are an extension of classic finite-state au-
tomata obtained by allowing output on transitions (see [46]). Sym-
bolic finite-state transducers [14] extend finite-state transducers by
symbolic transitions, which are defined using predicates for input
guards and symbolic terms for output. Our notion of SLTs extends
symbolic finite-state transducers with a sliding window over input,
which allows a transducer to generate outputs based on a bounded
number of inputs from the past.

4.2 Definitions
We now formally define symbolic finite-state transducers with k-
lookback — k-SLTs. We specialize our exposition for the case
when the alphabet of input and output symbols is Z, but gener-
alization is easy. We omit k, when it is not important.

Instead of reading a single symbol from the input tape at a
time, the tape head of a k-SLT is effectively a window of size
k + 1, reading the current and the last k symbols. Equivalently,
such a transducer can be seen as a transducer with k registers
updated in a FIFO manner on each transition—the newly read
symbol is inserted, while the oldest is removed from the queue.
Rather than using registers, we use the set of λ-variables Vkλ :=
{λ−k, . . . , λ−1, λ0} so that λ0 is the current symbol and λ−i is
the symbol i positions back.

Definition 1. A symbolic finite transducer with lookback k (k-SLT)
is a tuple A = (Q, q0,∆) where Q is a finite set of states, q0 ∈ Q
is the initial state and ∆ ⊆ Q× BExp[Vkλ]×Q× Exp[Vkλ]∗ is a
finite transition relation.

In other words, SLT is a variant of a symbolic sequential ε-
input-free (i.e., real-time) transducer having only final states,2

and in general can be non-deterministic and does not have to be
bounded-valued.

We say that SLT A is deterministic if for every two transitions

q
ϕ/t−−→ r and q

ϕ′/t′−−−→ r′ if ϕ ∧ ϕ′ is satisfiable then r = r′ and
(ϕ ∧ ϕ′) ⇒ t = t′ is valid. SLTs that are inferred by the Σ∗’s
learning algorithm will always be deterministic and even more,
transitions from every state will have mutually disjoint guards.

We next formally define how SLTs produce output. Before
defining a run of an SLT, we introduce some convenient notation.

2 It is unclear how to learn transducers with non-final states, as such trans-
ducers allow inherent ambiguity in where the output is produced. Indeed,
existing algorithms for learning concrete transducers (e.g., [50, 58]) require
all states to be final.

For brevity, we refer to the sequence λ−k . . . λ0 as ~λ. To process
the input, k-SLT prepends it with k dummy symbols ⊥ /∈ Z. Any
operation with ⊥ yields ⊥ and every comparison with ⊥ (except
⊥ = ⊥) is false. For a sequence ~a, let us denote ~a⊥ , ⊥k · ~a.

A run of k-SLTA = (Q, q0,∆) on ~a ∈ Zn is a finite sequence
of states q0 . . . qn such that there exists a sequence of transitions

q0
ϕ1/t1−−−−→ q1

ϕ2/t2−−−−→ q2 · · · qn−1
ϕn/tn−−−−→ qn,

where ϕ1, . . . , ϕn ∈ BExp[Vkλ] and t1, . . . , tn ∈ Exp[Vkλ]∗ such
that for all 1 ≤ i ≤ n, ~a⊥|[i,i+k] satisfies ϕi. We say thatA on the
input ~a produces the output ~o ∈ Z∗ and write ~a �A ~o if for all
1 ≤ i ≤ n, oi = ti

[
~λ 7→ ~a⊥|[i,i+k]

]
, where ~o|i = oi.

IfA is deterministic, the run is uniquely determined by the input
sequence. For a deterministic A and ~a ∈ Z∗, let us denote by
πA(~a), θA(~a) and γA(~a) the corresponding sequences ϕ1 · · ·ϕn,
t1 · · · tn, and o1 · · ·on, respectively.

We define the transduction of (a possibly nondeterministic) A
as a function TA : Z∗ → 2Z∗ defined by TA(~a) , {~o | ~a �A ~o}.
We say that A is single-valued if for all ~a, |TA(~a)| ≤ 1.

4.3 Composition of SLTs
SLTs are closed under composition. Given a k-SLT A and a l-SLT
B, their composition is a (k + l)-SLT A ◦ B such that TA◦B(~a) =
{TB(~o) | ~o ∈ TA(~a)}. The composition of SLTs can be con-
structed similarly as the composition of symbolic finite-state trans-
ducers [14].

4.4 Equivalence Checking
Unfortunately, general equivalence checking of SLTs is undecid-
able as it is already undecidable to check equivalence of con-
crete non-deterministic ε-free finite-state transducers [41]. While
the technique of Bjørner et al. [14] could be adapted to SLTs to
decide the single-valued case, that would not suffice in our case
as over-approximations of programs (§5) need not to be bounded-
valued. Fortunately, our learning conjectures are always determin-
istic, so in fact we only need to check equivalence between a deter-
ministic and a (possibly) non-deterministic SLT.

We present an efficient algorithm for equivalence checking be-
tween deterministic and non-deterministic SLTs, which is a sym-
bolic adaptation of the algorithm from Demers et al. [22] for decid-
ing single-valuedness of finite-state transducers. To check whether
a deterministic and non-deterministic SLT are equivalent, it suf-
fices to check whether their union (which is a non-deterministic
SLT) is single-valued. Checking whether a non-deterministic SLT
A = (Q, q0,∆) is single-valued is efficiently decidable inO(|Q|2)
time [22] by checking whether a linear grammar generated fromA
generates a language of palindromes [38].

Let (N,T, P, S) be a linear context-free grammar, with a fi-
nite set of non-terminals (resp. terminals) N (resp. T), a finite
set of productions P of the form N ::= TNT | ε, and the start
symbol S ∈ N . From a k-SLT A, generate a grammar G =
(Q×Q,BExp[Vkλ]×Exp[Vkλ]∗, P, [q0, q0]), where P is defined as
[s1, s2] ::= (ϕ1, t1)[s′1, s

′
2](ϕ2, t2), such that (si, ϕi, ti, s

′
i) ∈ ∆,∧

i ϕi is satisfiable, and ti 6= ⊥. By ⊥, our learning algorithm de-
notes outputs on transitions that are either infeasible because of the
constraints on the path condition, or subsumed by other predicates.
A is single-valued iff G generates a set of palindromes. Checking
whether the outputs match under the guards reduces to checking
the validity of formula (

∧
i ϕi) ⇒ t1 = t2, which can be done

with O(|Q|2) calls to the prover. If A is not single valued then we
construct a witness for disequality between the deterministic and
the non-deterministic SLT called separating sequence by finding
the shortest path from the start symbol to the first reachable rule
that does not generate a palindrome.

4.5 Extension with Lookahead
SLTs can be straightforwardly extended to incorporate lookahead.
In our model of SLTs, the sliding window begins at the current
input tape head position and covers k last symbols. Such window
can also be made to cover symbols ahead of the current head
position by using additional λ-variables λ1, . . . , λl such that λi
stands for the symbol i positions ahead. A k-SLT with a lookahead
l can be reduced to a (k+ l)-SLT, so equivalence checking of SLTs
with lookahead can be reduced to equivalence checking of SLTs.

5. Synthesis of Over-Approximations
We now show how to synthesize sound program over-approxima-
tions for a class of programs with finite lookback. Overapproxi-
mations are computed in two steps. In the first step, we construct
an over-approximation of the program that is based on predicate
abstraction [8, 30]. In the second step, we transform the obtained
abstraction to an equivalent non-deterministic SLT. We refine such
an SLT by augmenting the set of predicates in predicate abstraction.

5.1 Abstraction of Transductive Programs
The goal of the abstraction is to abstract away the internal com-
putation of the program but in doing so to keep all of its original
input-output behavior. Let us consider the LTS T = (State, C,)
of a transductive program P as defined in §3.3. We parameterize
our abstraction by a set of predicates Φ over program variables, in-
terpreted over V ⇀ Z. Let us denote by Pred(Φ) the set of boolean
combinations over predicates from Φ (i.e., all minterms). We define
the abstraction of T as the LTS T] = (State], C,]) constructed
as follows. The set of abstract states State] is given by

State] , N× Pred(Φ)× (VD ⇀ Exp[VI])× OutStr × N× N
where the valuations of program variables are mapped to predi-
cates in Pred(Φ) satisfied by the valuation, while the data variables
VD ⊆ V that are live (i.e., for which there exists data flow to output
terms), are kept intact along with other components of the state.
Using the approximate post operator on Pred(Φ) computed with
predicate abstraction we obtain the transition relation] on ab-
stract states. We rely on the soundness of the predicate abstraction
to obtain the following.

Proposition 2. For every input ~a, if τP(~a) = s0 . . . sn is a trace in
T , then there exists a trace τ]P(~a) = s′0 . . . s

′
n in T] such that for

every 0 ≤ i ≤ n, si.n = s′i.n, si.ρ = s′i.ρ si.ı = s′i.ı, si. = s′i.,
si.σ|VD = s′i.σ and si.σ satisfies s′i.ϕ. Consequently, the output
γ]P(~a) corresponding to the trace τ]P(~a) is equal to γP(~a).

5.2 Translation to SLTs
We now translate the abstract LTS T] = (State], C,]) into an
equivalent (possibly non-deterministic) SLT. We define an equiv-
alence relation ∼ on State] as follows. For s, s′ ∈ State], we
let s ∼ s′ iff3 for Λ(s) = (n, ϕλ, σλ, ρλ, j) and Λ(s′) =
(n′, ϕ′λ, σ

′
λ, ρ
′
λ, j
′) we have n = n′, ϕλ ⇔ ϕ′λ and σλ = σ′λ.

Relation ∼ can have infinitely many equivalence classes in
general, however, we focus on programs having finite-index ∼, as
we can represent such programs with SLTs and learn with Σ∗.

Definition 3. We say that P is SLT-representable if for any choice
of Φ, the corresponding relation ∼ is of finite index.

SLT-representable programs necessary have a bounded lookback.
Let us define paths]in(s, t) as the set of all]-sequences of

states between s and t such that there is a single input transition

3 We extend the definition of input-relativization to s = (n, ϕ, σ, ρ, ı, ) ∈
State] by Λ(s) , (n, ϕ[~in

ı7−→ ~λ], σ[~in
ı7−→ ~λ], ρ[~in

ı7−→ ~λ], ).

between states on the path from s to t. For ξ ∈ paths]in(s, t),
let us denote by π](ξ) the conjunction of assumed predicates on
transitions in ξ and let θ](ξ) be the produced symbolic output. We
need the following lemma for our translation to an SLT to be well-
defined.

Lemma 4. If s ∼ s′ and t ∼ t′ then for every path ξ ∈
paths]in(s, t), there exists an equivalent path ξ′ ∈ paths]in(s

′, t′)
such that π](ξ) = π](ξ′) and θ](ξ) = θ](ξ′).

We define AΦ to be the SLT (Q, q0,∆) with Q , {[s]∼ |
s is in-state} as the set of states, q0 , [s0]∼ as the initial state

and ∆ as the transition relation such that [s]
ϕ/t−−→ [s′] ∈ ∆ iff

there exist ξ ∈ paths]in(s, s
′), such that π](ξ) = ϕ and θ](ξ) =

t. Intuitively, AΦ represents all isomorphism classes of big-step
transitions between the abstracted in-states.

Lemma 5. If P is SLT-representable then AΦ is an SLT.

We can now show that AΦ captures exactly the behavior of T]
thus AΦ soundly over-approximates the behavior of P .

Proposition 6. For all ~a, γ]P(~a) = ~o iff ~a⊥ �AΦ ~o.

Corollary 7. For all ~a, if γP(~a) = ~o then ~a⊥ �AΦ ~o.

5.3 Refinement
Suppose that AΦ strictly over-approximates the behavior of an
SLT-representable P on some input ~a, i.e., there exist ~o and ~o′,
~o 6= ~o′, such that γP(~a) = ~o and ~a �AΦ ~o′. Then we need to
refine the abstractionAΦ. We do so by adding enough predicates to
Φ to evidence infeasibility of the spurious run inAΦ that generates
~o′.

Our approach to finding a new set of predicates for refining
AΦ is based on standard counterexample feasibility analysis with
weakest preconditions [6]. The basic idea is to build a predicate α
from the spurious trace in AΦ generating ~o′ so that α is unsatisfi-
able if and only if the given trace is infeasible in P . Starting with
false, α is obtained by applying the weakest precondition of com-
mands in P along the trace, until the beginning of the trace. To
maintain the syntactic form of assume-predicates collected along
the trace, we keep all substitutions in α explicitly. The set of all
atomic predicates in α is then used to augment Φ.4 Although more
involved methods (e.g., based on Craig interpolation) are possi-
ble, our empirical evaluation shows that this heuristic works well
in practice for our target classes of programs.

Completeness of the predicate selection method. Since our ab-
straction is based on predicate abstraction and fully precise isomor-
phic representation of other components of the state,AΦ in fact de-
fines the strongest inductive invariant containing the reachable set
of states of P that is expressible as a Boolean combination of the
given set of predicates, while faithfully preserving the input-output
relation in the relativized form. If there exists a quantifier-free in-
ductive invariant ψ which can be built using some set of predicates
Φ such that ψ uniquely identifies the reachable states of P , then the
construction of abstraction would converge. Assuming a complete
decision procedure for the underlying theory and a predicate se-
lection method that would eventually build such Φ, by the relative
completeness of predicate abstraction [9, 42], we could generate an
invariant as strong as ψ.

Although it is not clear how to construct such ψ directly from
P , we can construct it if the number of states n of an SLT AP that
is behaviorally equivalent to P is known a priori—by explicitly en-
coding a checking sequence [46] that distinguishes AP from all

4 In some examples we employ additional heuristic that uses templates built
from syntactic predicates in the code.

other transducers up to n states. To abstract away the complexity
of such construction, we assume existence of a predicate selection
method that eventually yields a set Φ resulting in an abstraction
AΦ equivalent to P . We will say that a predicate selection method
is complete if it is guaranteed to eventually generate a sufficient
set of predicates to construct AΦ equivalent to P . Our main result
expresses completeness of our learning algorithm relative to exis-
tence of such a complete predicate selection method. However, we
emphasize that the predicate selection mechanism does not affect
the soundness of Σ∗, nor the quality of inferred models, only the
eventual convergence.

6. Learning
In this section, we describe Σ∗’s learning algorithm and prove its
main properties. Our algorithm iteratively builds conjectures simi-
larly asL∗. To make the presentation reasonably self-contained, we
first give a brief overview ofL∗ (§6.1). We then define the represen-
tation of conjectures (§6.2), followed by the detailed presentation
of the learning algorithm (§6.3) and its properties (§6.4).

6.1 Background: Overview of L∗

Here we give an informal overview of the classic L∗. See the paper
of Angluin [5] for a more detailed description (or Shahbaz and Groz
[50] for the Mealy machines version of L∗).

The goal of L∗ is to learn an unknown regular language D by
generating a deterministic finite automaton (DFA) that accepts D.
L∗ starts by asking a teacher, who knows D, membership queries
over a known concrete alphabet to check whether certain words are
in D. The results of these queries are recorded in a so-called obser-
vation table. Membership queries are iteratively asked until certain
technical conditions are met, upon which L∗ conjectures an au-
tomaton. L∗ asks the teacher an equivalence query to check if the
conjectured language is equivalent to D. The teacher either con-
firms the equivalence or returns a counterexample, which is a word
that distinguishes D from the conjecture. L∗ uses the counterex-
ample to devise new membership queries, refining the conjecture.
This procedure is repeated until the conjecture becomes equivalent
to D. If D is indeed a regular language then L∗ is guaranteed to
find a (minimal) DFA for D after at most a polynomial number of
membership and equivalence queries.

In Σ∗, we answer the membership queries by using a combi-
nation of concrete and symbolic execution [16, 28, 49], and the
equivalence queries by equivalence checking learned conjectures
and increasingly refined abstractions, using the equivalence check-
ing algorithm for SLTs (§4.4).

6.2 Definitions
We proceed by giving notational conveniences used in the section
and defining Σ∗’s representation of the observation table.

We first define a relativization function for path predicates and
symbolic outputs by Λ(s1 . . . sn) , s1[~in

17−→ ~λ] . . . sn[~in
n7−→ ~λ],

where ~in i7−→ ~λ is the variable substitution defined in §3.6 and ~s is
either a path predicate or symbolic output. If ~s is a symbolic out-
put ~t, the same relativization function is applied to each individual
term in the subsequence, i.e., if t = t1 . . . tm then t[~in

i7−→ ~λ] =

t1[~in
i7−→ ~λ] . . . tm[~in

i7−→ ~λ]. We next define witness as a function
that takes a sequence of relativized predicates, derelativizes them
by applying the inverse of the Λ substitution, computes a conjunc-
tion of derelativized predicates

∧
1≤i≤|~p|

(
Λ−1(~p)

)
|i, passes the

conjunction to an SMT solver, and returns a concrete sequence
of input symbols of length |~p| satisfying the conjunction, or ⊥ if
the conjunction is infeasible. Finally, we point out that all equality

(resp. inequality) checks = (resp. 6=) over predicates and terms in
this section are syntactic equality (resp. inequality) checks.5

Σ∗ constructs symbolic observation table similarly as L∗, but
table entries are path predicates and symbolic outputs (§3.4), rather
than concrete words. The finished table can be easily translated into
an SLT, representing a conjecture. As in L∗, such conjecture will
always be deterministic.

Definition 8. Symbolic observation table is a quadruple (R,S,
E, T) ⊆ (BExp[Vλ]∗,BExp[Vλ]∗,BExp[Vλ]∗,BExp[Vλ]∗ ×
BExp[Vλ]∗ → (Exp[Vλ] ∪ {⊥, ε})∗), where

- R ⊆ S represents a set of identified states,
- S (resp. E) is a prefix- (resp. suffix-) closed set of relativized

path predicates, and
- T is a map indexed by ~pp ∈ S, ~ps ∈ E, containing the suffix

of the relativized symbolic output generated when processing
~ps immediately after ~pp, i.e., if ~a = witness(~pp · ~ps) and
~t = Λ(θP(~a)) then T [~pp, ~ps] = ~ts, where ~ts is a suffix of ~t
such that |~ts| = |~ps|.

For ~p ∈ S, we define a ~p-row in the observation table as an
E-indexed set, denoted ~p-row . We denote outputs generated by
infeasible transitions in the table by ⊥.

Intuitively, R represents a set of shortest paths leading to dis-
covered states, S ⊇ R contains exactly path predicates from R
and additionally all the sequences that extend sequences fromR by
exactly one big-step transition. The role of S is to exercise all the
transitions in the inferred SLT. Finally, E is the set of distinguish-
ing tests that distinguish different states.

The classic L∗ makes a conjecture when the table is closed,
which means that every sequence in S has a representative in R,
i.e., ∀~p ∈ S . ∃~r ∈ R . ~p-row = ~r-row . We define closedness in
the same way as L∗. From a closed table, we can easily construct
a complete (for all states and input symbols, all transitions are
defined) SLT using standard techniques (e.g., see [5, 50]).6

6.3 The Learning Algorithm
We begin by describing the FILLROWS algorithm that computes
the missing entries of the observation table, continue with the
EXTENDTABLE algorithm that explores the successor states of all
states discovered at certain step, and end with the Σ∗’s learning
algorithm.

Algorithm 1 computes the missing entries in the observation
table. If the entry is missing for some prefix ~pp ∈ S and suffix
~ps ∈ E, we first try to compute a concrete witness ~a by splicing
together the prefix and the suffix (Line 2). While the sets S (and
R) contain path predicates that are collected along prefixes of
some feasible paths in P starting from the initial state, the set E
contains suffixes of feasible paths. Naturally, when we arbitrarily
splice prefixes and suffixes of different paths, the resulting formula
might be infeasible. If feasible, we execute ~a on P using concolic
execution (Line 4) and collect the predicates (~r) and output terms
(~t) from big-step transitions. Note that the collected predicates
might differ from ~pp · ~ps, but at least the prefix (corresponding to
~pp) will always match. The outputs corresponding to mismatched

5 At the cost of more complex exposition, we could use semantic equality
and check that output terms are equal under the guard restrictions. Such an
approach might allow us to learn more compact SLTs.
6 In L∗, one also defines the consistency property, which would in our
setting say that if two sequences ~p1, ~p2 from R are equivalent, then both
states reached by γP (witness(~p1)) and γP (witness(~p2)) must produce
the same output in the next big-step transition given the same input symbol.
We maintain the consistency of our symbolic observation table by always
assuring that each state has only one representative in the R set.

input and output : Observation table OT
1 forall the ~pp ∈ S, ~ps ∈ E such that T [~pp, ~ps] is undefined do
2 ~a := witness(~pp · ~ps)
3 if ~a 6= ⊥ then
4 (~r,~t) := (Λ(πP(~a)),Λ(θP(~a))) // assert(|~r| = |~t|)
5 ~ts := ε

6 forall the 1 ≤ i ≤ |~t| do
7 if i > |~pp| then
8 if (~pp · ~ps)|i = ~r|i then ~ts := ~ts · ~t|i
9 else ~ts := ~ts · ⊥

10 else
// assert(~pp|i = ~r|i)

11 T [~pp, ~ps] := ~ts
12 else
13 T [~pp, ~ps] := ⊥

// Close the table

14 forall the ~p ∈ S s.t. ¬∃~r ∈ R . ~p-row = ~r-row do
15 R := R ∪ ~p // New state

16 Return OT

Algorithm 1: The FILLROWS Algorithm.

predicates and infeasible path conditions are marked ⊥. Lines 6–
9 replace the output terms at positions where the ~pp · ~ps and ~r
sequences differ syntactically. Finally, lines 14–15 close the table.

Algorithm 2 takes a state representative ~r, i.e., a path predicate
that holds on the shortest path to the identified state, and finds all the
outgoing big-step transitions from that state, adding the predicates
from those transitions to E and the entire sequence (~r extended by
one transition) to S. The only interesting part of the algorithm is
the discovery of new transitions and the corresponding predicates.
In the first iteration, Line 6 extends the representative sequence ~r
with predicate true, effectively allowing the solver to produce an
arbitrary value for the last element of the concrete input sequence.
Executing the obtained concrete sequence and collecting predicates
along the path, we identify the first big-step transition guard pred-
icate (rs). In every following iteration, we negate a disjunction of
the predicates discovered so far, until the disjunction becomes valid
(test at Line 4). All infeasible traces lead to a ghost state that has
one self-loop transition labeled true/⊥. The algorithm creates such
a state automatically, if needed, by filling the corresponding row
with ⊥, as even the prefix to the ghost state is infeasible.

Finally, Algorithm 3 infers a symbolic transducer. Lines 1–9
discover all the big-step transitions from the initial state and the
corresponding predicates. All the discovered predicates are added
to the set E. In the next three lines, we extend and close the table,
producing the first AC conjecture and the first abstraction AΦ of
P . The loop beginning on Line 15 checks the equivalence between
the conjecture and abstraction. If they are equivalent, the algorithm
terminates returning the exact transducer implemented by P . Oth-
erwise, the counterexample is checked against P . If it is spurious,
we refine the abstraction, otherwise, we refine the conjecture. We
use Shahbaz and Groz’s [50] technique for processing the coun-
terexamples adapted for our symbolic setting. First, we collect the
predicates from P along the path determined by the counterexam-
ple and discard the longest prefix that is already in S. We denote
the remaining suffix by ~ps. We add all suffixes of ~ps to E (Line 24),
to assure that E remains suffix closed.

6.4 Properties
First, we state the main properties of Σ∗, and then proceed with the
proof of relative completeness and a discussion of computational
complexity.

input and output : Observation table OT
1 forall the ~r ∈ R do // Extend all sequences from R
2 if ¬∃~ps ∈ E . |~ps| = 1 ∧ ~r · ~ps ∈ S then
3 s := false
4 while s 6⇔ true do
5 rs := ε
6 ~a := witness(~r · ¬s)
7 if a = ⊥ then
8 rs := ¬s
9 s := true

10 else
11 ~p := Λ(πP(~a))

// assert(|~p| = |~r|+ 1) rs := ~p||~r|+1

12 s := s ∨ rs
13 E := E ∪ {rs}
14 S := S ∪ {~r · rs}
15 OT :=FILLROWS(OT)
16 Return OT

Algorithm 2: The EXTENDTABLE Algorithm.

init : R = {ε}, S = {ε}, E = ∅, T = ∅, i = 0, s = false
result : k-SLT AC

1 repeat // Fill 1st row
2 if s⇔ false then
3 a := randomly generated array of type Z[1]
4 else
5 a := witness(¬s)
6 p := Λ (πP(a)|1) // 1st pred. from path predicate

7 E := E ∪ p
8 T [ε, p] := Λ (θP(a)|1)
9 s := s ∨ p

10 until s⇔ true
11 (R,S,E, T) :=EXTENDTABLE(FILLROWS(R,S,E, T))
12 Compute AC from (R,S,E, T)
13 Compute initial AΦ of P
14 while true do
15 Let (~a, ~o) be a separating sequence between AC and AΦ

16 if ~a = ε then
17 Return AC
18 if γP(~a) 6= ~o then // Spurious counterexample?
19 Refine AΦ of P on (~a, ~o)
20 else
21 ~p := Λ(πP(~a))
22 Let ~pp be the longest prefix of ~p s.t. ~pp ∈ S
23 Let ~ps be s.t. ~p = ~pp · ~ps
24 E := E ∪ Suffix (~ps)
25 (R,S,E, T) :=EXTENDTABLE(FILLROWS(R,S,E, T))
26 Compute AC from (R,S,E, T)

Algorithm 3: The Σ∗’s Learning Algorithm.

Lemma 9. Let T = (R,S,E, T) be a symbolic observation table.
Then Σ∗ preserves the following invariants:

1. R and S (resp. E) are always prefix- (resp. suffix-) closed.
2. For every ~p ∈ S there is a unique ~r ∈ R such that ~p-row =
~r-row .

3. For every ~r ∈ R, there are r1
s , . . . , r

n
s such that

∨n
i=1 r

i
s ⇔

true and for all i, it holds that ~r · ris ∈ S.
4. The conjecture AC is closed at the end of each step.

Correctness. R represents the part of the symbolic execution tree
of P on which the conjecture faithfully represents the behavior of
P , which is stated with the following proposition.

Proposition 10 (Bounded correctness). After each step, for all
~r ∈ R and ~a such that ~a = witness(~r), γP(~a) = γAC (~a) holds.

One can rephrase bounded correctness as a guarantee given by
Σ∗ in case Σ∗ is interrupted before reaching a convergence. In other
words, we can consider Σ∗ as performing bounded model checking
of the program with a state-space exploration strategy guided by the
learned model.

Completeness. The following lemma ensures that a progress is
made after each conjecture refinement.

Lemma 11. If at some step of Σ∗, (~a, ~o) is a separating sequence
such that γP(~a) = ~o, then at the end of the step, for all ~a′ such that
~a′ = witness(πP(~a)), γAC (~a′) = γP(~a′) holds.

We state the completeness of Σ∗ relative to the completeness of
the predicate selection method.

Theorem 12 (Relative completeness). If P is SLT-representable
and the predicate selection method for refinement is complete, then
Σ∗ terminates with AC being behaviorally equivalent to P .

Proof. First note that whenAΦ is single-valued, then by the sound-
ness of abstraction, AΦ is in fact behaviorally equivalent to P . As
the predicate selection method is assumed to be complete, we will
eventually obtain a single-valued AΦ.

The equivalence check ofAΦ andAC always returns the short-
est separating sequence (if one exists). There can be only finitely
many shortest separating sequences of a given length, and at each
step such a sequence is used either to refine the conjecture or to
refine the abstraction. Therefore, the number of conjecture refine-
ments must also be finite.

Computational complexity. Next, we analyze the complexity of
Σ∗. Let n be the number of states of the inferred SLT, k the
maximal number of outgoing big-step transitions from any state,
m the maximal length of any counterexample, and c the number
of counterexamples. There can be at most n− 1 counterexamples,
as each counterexample distinguishes at least one state. Since we
initializeE with k predicates, |E| can grow to at most k+m(n−1).
The size of S is at most n · k. Thus, the table can contain at most
n · k · (k + m · n − m) = O(n · k2 + m · n2 · k) entries.
The k factor is likely to be small in practice, and our equivalence
checking algorithm finds the minimal counterexample. The SMT
solver is called once per each state (i.e., representative in R) and
for each outgoing transition. For each equivalence check, we might
need to call the solver n2 times. Thus, the total worst-case number
of calls to the solver is O(n · k + n2), not including the number
of calls required for abstraction refinement, which depends on the
abstraction technique used.

7. Applications
In this section, we demonstrate practical utility of Σ∗ by applying
it in three different application domains and reporting experimental
results obtained with our prototype implementation.

We built our implementation on top of KLEE [17] with STP [25]
and CPAchecker [13]. We patched KLEE to generate relativized
symbolic traces and answer membership queries for the learning al-
gorithm (§6), and used STP in the equivalence checking algorithm
(§4.4). We used CPAchecker for counterexample-guided predicate
abstraction refinement (§5).

All experiments were run on a machine with Intel Core2 Quad
2.8 GHz CPU and NVIDIA GeForce GTX 460 GPU (with 7

Benchmark Learned Int. bits #States #Transitions Lookback #AC refinements #AΦ refinements |Φ|
EncodeHtml [37] X 8 1 2 0 0 1 10
GetTags [14] X 48 3 7 1 4 5 6
CleanseAttribute X 40 2 4 1 0 3 14
CleanseCss X 40 1 2 0 0 2 16
CssUrlEscape X 40 1 11 0 0 1 12
HtmlEscape X 8 L+ 1 7 · L L L L+ 3 L+ 11
JavascriptEscape X 16 3 16 2 2 6 20
JavascriptNumber X 41 17 19 16 17 23 41
JsonEscape X 8 L+ 1 11 · L L L L+ 3 L+ 12
PreEscape X 8 L+ 1 5 · L L L L+ 3 L+ 6
UrlQueryEscape X 8 2 11 0 2 5 19
XMLEscape X 8 L+ 1 7 · L L L− 1 L+ 2 L+ 11
PrefixLine − 8
SnippetEscape − 8

Table 1: Experimental Results. The benchmarks that Σ∗ successfully learned are denoted by X. The last benchmark could be learned if Σ∗

were extended to handle subsequential transducers. Int. bits is the size of the internal control and data state in bits, #States the number of
states in the final SLT, #Transitions the number of transitions in the final SLT, #AC refinements the number of refinements of the conjecture,
#AΦ refinements the number of refinements of the abstraction, and |Φ| the size of the set of predicates in the final abstraction. In each of
the four benchmarks whose rows contain symbolic expressions dependent on L, the particular L denotes the bound on the size of the buffer
internally used by the benchmark. The value of L depends on the characteristics of the input language of the benchmark and is a priori fixed
in our four benchmarks (e.g., for HtmlEscape, it is bounded by the maximal length of tag names, attribute names and special symbols).

1.42 GHz multiprocessors, 48 cores each). The learning algorithm
inferred all learnable benchmarks described below in less than three
seconds.

7.1 Web Sanitizers Verification
To make web applications more secure, sanitization is used to
remove possibly malicious elements from user’s input. Although
small in numbers of lines of code, sanitizers in real-world appli-
cations are surprisingly difficult to implement correctly [10, 37],
often because low-level implementation tricks are obscuring the
intended input-output behavior. By automatically inferring input-
output models of sanitizers, we can automatically check their prop-
erties such as commutativity, reversibility, and idempotence using
tool such as Bek [37].

We evaluated Σ∗ on the sanitizers from Google AutoEscape
(GA) web sanitization framework, the same benchmarks used by
Hooimeijer et al. [37]. We dropped the ValidateUrl sanitizer, as it
is effectively just a wrapper for calling other sanitizers. In addition
to GA sanitizers, we added to our benchmark suite the sanitizers
EncodeHtml [37] and GetTags [14].

We found out that 86% of GA sanitizers (12 out of 14) along
with EncodeHtml and GetTags are SLT-representable and were
successfully learned by Σ∗ (Table 1). In comparison, the authors
of [37] had to invest several hours of a human expert’s time into
manual synthesis of each transducer from the source code. Only
two sanitizers could not be inferred by Σ∗. PrefixLine is effec-
tively a 0-SLT, but it is implemented by calling the memchr function
in guards, which could only be represented by nondeterminism, as
memchr’s return value could be arbitrarily far ahead from the start
of the input string. SnippetEscape generates output from a pre-
defined set of symbols only at the end of the input, but it could be
learned if Σ∗ were extended to subsequential transducers by gener-
alizing Vilar’s algorithm [58] to the symbolic setting.

7.2 Stream Filter Optimization
Stream programs often consist of many interacting filters that have
to be optimized against various goals (e.g., speed, latency, through-
put, . . .). Two vital filter optimizations are reordering and fusion.
For instance, reordering might be profitable when it would place
a filter that is selective (i.e., drops some data) before a costly fil-
ter that does some processing. However, we must ensure that the

Benchmark Linear Stateless
Saxpy kernel [56] + +
Radix-2 complex FFT filter [43] + +
FIR filter [45] + +
Zig-zag descrambling filter in MPEG-2 [23] + +
Clsfr in L3-Switch bridge [18] − +
FM demodulator in StreamIt [54] − +
MPEG-2 internal parser in StreamIt [54] − −
GSM encoder/decoder in MiBench [33] − −

Table 2: Properties of Eight Filters Inferred by Σ∗. First four fil-
ters are linear and can be optimized with existing techniques. Σ∗

enables fusion and reordering optimizations for all eight filters. By
stateless, we mean single-state transducers.

two filters are commutative in order for reordering to be safe. Filter
fusion is used when it would be profitable to trade pipeline paral-
lelism for lower communication cost.

We conducted a set of experiments to explore ability of Σ∗ to
enable stream filter optimizations such as reordering and fusion.
Table 2 shows eight filters inferred by Σ∗ indicating their two
key properties: whether they encode a linear or non-linear output
function, and whether they are stateless (i.e., have a single state)
or stateful (i.e., have more then one state). First four filters can be
optimized with existing techniques for optimizing linear filters [2,
45]. To our knowledge, no optimization techniques used in existing
stream program compilers can optimize the remaining filters in
Table 2. On the other hand, Σ∗ enables fusion and reordering
optimizations for all eight filters.

7.3 Parallelization
Finally, we show how SLT models of filters enable automated paral-
lelization. We consider two approaches to improving utilization of
hardware concurrency by mapping filters to (1) multiple cores and
(2) SIMD instructions. Stateless filters are inherently data-parallel
and lend themselves naturally to both multi-core and vectorized im-
plementations by simple replication. Stateful filters normally can-
not be parallelized this way as their next invocation depends on the
previous invocation. However, SLT filters have usually small, a pri-

ori known, number of states, so we can run each replica of an SLT
filter from each state in parallel and merge suitable outputs.

To provide some insight into possible practical speedups, we
generated SIMD implementations using Intel SSE4 intrinsics and
GPU implementations using NVIDIA CUDA 4.2 of 11 single-state
SLTs (3 from Table 1, 6 from Table 2, and 2 hand-crafted) and
one three-state SLT inferred by Σ∗. Original source code repre-
sentations of all SLTs are stateful and some of them are with non-
affine loop nests. For the stateless SLTs, we obtained speedups in
the range of 1.72 to 3.89 for the SSE versions, and 1.5 to 2.7 for the
CUDA versions. For the 3-state SLT, the speedup of the CUDA
version was 2.3. CUDA versions were run using 1024 threads
(resp. 1024 threads in 3 blocks) for the single-state (resp. three-
state) SLTs. We established the baseline by running the sequential
version of SLTs compiled with gcc with all optimizations (-O3)
and SSE flags turned on.

8. Discussion
Predicate abstraction. To obtain complete models, Σ∗ relies on
convergence of the abstraction. One could rightfully ask why we
need the whole learning machinery of Σ∗ as we presume the ab-
straction eventually becoming equivalent (although, in a possibly
non-deterministic form) to the behavioral model. Our program is
deterministic, so as long as the abstraction is not single-valued it
must contain infeasible behavior. Therefore, we could consider a
procedure that just iteratively refines the abstraction until the ab-
straction becomes single-valued.

Setting aside how to efficiently refine abstractions alone, an
abstraction-only approach suffers from a fundamental limitation:
models generated by the abstraction can be unboundedly larger
than the ones learned by Σ∗. For instance, consider the program
from Figure 1 in [31], which is considered as an example on
which predicate abstraction does not work well. Let us adapt the
example by adding reading an input and writing some output in the
loop, and enclosing it with an outer while(true)-loop to become
a transductive program. Then Σ∗ infers a single-state SLT, while
by using predicate abstraction alone we would obtain an SLT with
1000 states.

SLT limitations. Along with the dependency on the abstraction,
ability of Σ∗ to infer complete models of program behavior is
limited by the expressive power of symbolic conjectures. We have
judiciously restricted SLTs so as to be able to represent interesting
real-world examples while still being able to learn and equivalence
check them efficiently. However, there are still other interesting
classes of programs that are not SLT-representable. At the cost of
additional complexity, we believe it would be possible to extend
Σ∗ to work with symbolic versions of more expressive transducers
such as subsequential [58] and streaming transducers [3] and in this
way enable learning of larger classes of programs.

Incomplete models. While the main concern of this paper is
learning of exact behavioral models, incomplete models inferred
by Σ∗ could also be useful, e.g., for automated testing based on
dynamic symbolic execution [16, 28, 49]. The learning component
of Σ∗ can be seen as systematically exploring all paths in the exe-
cution tree of a program, but in addition conjecturing the behavior
of not yet explored branches. Conjectures could be used to guide
the exploration strategy, similarly as in MACE [19], which showed
how concrete transducer conjectures enable more effective testing
of protocol implementations.

9. Other Related Work
Learning of symbolic transducers. Previous work on learning
some notion of symbolic transducers [1, 12, 40] focuses on lim-

ited variations that a priori fix the shape of predicates and generate
concrete values. Learning algorithms for these transducers postu-
late existence of an equivalence checking oracle and work over
concrete alphabets, relying on the shape restrictions to translate
the L∗-inferred concrete transducer to a symbolic one. As software
artefacts feature predicates that are unknown prior to the analysis,
if techniques [1, 12, 40] were to be applied in the software setting,
they would need to exhaustively enumerate predicates, whose set is
unbounded.

Learning in verification. Techniques for learning various types
of automata have been applied in a wide variety of verification set-
tings: inference of interface invariants [4, 27, 51], learning-guided
concolic execution [19], compositional verification [21], and regu-
lar model checking [34]. In those settings, except for [27], learning
is performed using concrete alphabets in a black-box manner, even
though source code is usually available. Independently to us, Gi-
annakopoulou et al. [27] have recently developed a technique for
learning component interfaces that combines L∗ with symbolic ex-
ecution to discover method input guards. However, their approach
treats method invocations as a single input step with no output,
and, unlike Σ∗, assumes that each method has a finite number
of paths. Under this later constraint, equivalence checking can be
done by merely executing a sufficiently large number of member-
ship queries. Alur and Černý’s approach to synthesis of interface
specifications with JIST [4] also uses predicate abstraction as Σ∗.
However, predicate abstraction in JIST is used to check whether
the synthesized interfaces are safe for a given safety property. In
general, such interfaces are approximate and may incorporate in-
feasible behavior. In addition, the paper [4] does not demonstrate
that the technique can be fully automated. In contrast, Σ∗ is fully
automated and infers faithful models upon termination.

Property checking. Although the goal of Σ∗ is different, it resem-
bles some ideas used in property checking. Most closely related,
collecting predicates on conditional statements as in automated
testing [16, 28, 49] has been previously combined with predicate
abstraction in the SYNERGY algorithm [31]. While SYNERGY
uses a combination of must and may analyses to check safety prop-
erties faster, Σ∗ uses must (learning) and may (abstraction) to infer
a more compact input-output relation.

Optimizations of filters. The closest work to our application of
Σ∗ for stream compiler optimizations is on optimizations of linear
filters [45] and (slightly more general) linear state space systems
[2] in StreamIt. In another line of work [47], fusion of filters
for Brook has been developed using an affine model. Soulé et
al. [52] developed a proof calculus that allows analysis of non-
linear filters, but they can perform reordering optimizations only if
filters are stateless. In contrast, Σ∗ allows fusion and reordering of
stateful filters with non-linear input-output relations. Approaches
for numerical static analysis of linear filters (e.g., [24]) do not relate
directly to ours as their goal is to obtain deep numerical properties
of filters (such as numerical bounds) for safety-critical applications.

Automated parallelization. Thies et al. [55] extract pipeline par-
titions from legacy streaming applications written in C by relying
on programmer-provided annotations indicating pipeline bound-
aries. In contrast, our approach does not require any annotations.
For synchronous dataflow streaming applications, parallelism has
been exploited either by replicating stateless filters [15, 29, 44],
or by using affine partitioning of loop nests [47]. In contrast, Σ∗

enables parallelization of non-linear stateful filters with non-affine
loop bounds. There is a massive amount of work on general cross-
loop iteration dependence scheduling (e.g., see [11]). Σ∗ is aimed
at complementing such advanced techniques by enabling naı̈ve par-

allelization of behaviorally simple loop nests that are not necessary
polyhedral, disjoint or with a clear pipeline structure.

Acknowledgments
This work was supported by the Gates trust, the Lawrence Liver-
more National Lab grant B597718, and by the NSERC PDF fel-
lowship. Thanks to Mike Dodds, Eric Koskinen, Matthew Parkin-
son, Dawn Song, John Wickerson and the anonymous reviewers for
comments and suggestions.

References
[1] F. Aarts, B. Jonsson, and J. Uijen. Generating models of infinite-state

communication protocols using regular inference with abstraction. In
Proc. of the 22nd IFIP WG 6.1 Int. Conf. on Testing Software and
Systems, pages 188–204, 2010.

[2] S. Agrawal, W. Thies, and S. P. Amarasinghe. Optimizing stream
programs using linear state space analysis. In Proc. of the 2005
Int. Conf. on Compilers, Architecture, and Synthesis for Embedded
Systems, pages 126–136, 2005.

[3] R. Alur and P. Černý. Streaming transducers for algorithmic verifica-
tion of single-pass list-processing programs. In Proc. of the 38th ACM
SIGPLAN-SIGACT Symp. on Principles of Programming Languages,
pages 599–610, 2011.

[4] R. Alur, P. Černý, P. Madhusudan, and W. Nam. Synthesis of interface
specifications for Java classes. In Proc. of the 32nd ACM SIGPLAN-
SIGACT Symp. on Principles of Programming Languages, pages 98–
109, 2005.

[5] D. Angluin. Learning regular sets from queries and counterexamples.
Information and Computation, 75(2):87–106, 1987.

[6] T. Ball. Formalizing counterexample-driven refinement with weakest
preconditions. In Engineering Theories of Software Intensive Systems,
volume 195 of NATO Science Series, pages 121–139. 2005.

[7] T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automatic pred-
icate abstraction of C programs. In Proc. of the 2001 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 203–213, 2001.

[8] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and cartesian
abstraction for model checking C programs. In Proc. of the 7th
Int. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems, pages 268–283, 2001.

[9] T. Ball, A. Podelski, and S. K. Rajamani. Relative completeness of
abstraction refinement for software model checking. In Proc. of the 8th
Int. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems, pages 158–172, 2002.

[10] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna. Saner: Composing static and dynamic anal-
ysis to validate sanitization in web applications. In IEEE Symposium
on Security and Privacy, pages 387–401, 2008.

[11] M. M. Baskaran, N. Vydyanathan, U. Bondhugula, J. Ramanujam,
A. Rountev, and P. Sadayappan. Compiler-assisted dynamic schedul-
ing for effective parallelization of loop nests on multicore processors.
In Proc. of the 14th ACM SIGPLAN Symp. on Principles and Practice
of Parallel Programming, pages 219–228, 2009.

[12] T. Berg, B. Jonsson, and H. Raffelt. Regular inference for state
machines using domains with equality tests. In Proc. of the Theory
and practice of software, 11th Int. Conf. on Fundamental approaches
to software engineering, pages 317–331, 2008.

[13] D. Beyer and M. E. Keremoglu. Cpachecker: A tool for configurable
software verification. In Proc. of the 23rd Int. Conf. on Computer
Aided Verification, pages 184–190, 2011.

[14] N. Bjørner, P. Hooimeijer, B. Livshits, D. Molnar, and M. Veanes.
Symbolic finite state transducers: Algorithms and applications. In
Proc.of the 39th ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages, 2012.

[15] I. Buck, T. Foley, D. R. Horn, J. Sugerman, K. Fatahalian, M. Houston,
and P. Hanrahan. Brook for GPUs: stream computing on graphics
hardware. ACM Trans. Graph., 23(3):777–786, 2004.

[16] C. Cadar and D. R. Engler. Execution generated test cases: How
to make systems code crash itself. In Proc. of the 12th Int. SPIN
Workshop on Model Checking Software, pages 2–23, 2005.

[17] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
Proc. of the 8th USENIX Symp. on Operating Systems Design and
Implementation, pages 209–224, 2008.

[18] M. K. Chen, X.-F. Li, R. Lian, J. H. Lin, L. Liu, T. Liu, and R. Ju.
Shangri-La: achieving high performance from compiled network ap-
plications while enabling ease of programming. In Proc. of the ACM
SIGPLAN 2005 Conference on Programming Language Design and
Implementation, pages 224–236, 2005.

[19] C. Y. Cho, D. Babić, P. Poosankam, K. Z. Chen, E. X. Wu, and
D. Song. MACE: Model-inference-assisted concolic exploration for
protocol and vulnerability discovery. In USENIX Security Symposium,
2011.

[20] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In Proc. of the 12th
Int. Conf. on Computer Aided Verification, pages 154–169, 2000.

[21] J. M. Cobleigh, D. Giannakopoulou, and C. S. Pǎsǎreanu. Learn-
ing assumptions for compositional verification. In Proc. of the 9th
Int. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems, volume 2619, pages 331–346, 2003.

[22] A. J. Demers, C. Keleman, and B. Reusch. On some decidable
properties of finite state translations. Acta Informatica, 17:349–364,
1982.

[23] M. Drake, H. Hoffmann, R. M. Rabbah, and S. P. Amarasinghe.
MPEG-2 decoding in a stream programming language. In Proc. of the
20th International Parallel and Distributed Processing Symposium,
2006.

[24] J. Feret. Static analysis of digital filters. In Programming Languages
and Systems, 13th European Symposium on Programming, pages 33–
48, 2004.

[25] V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and
arrays. In Proc. of the 19th Int. Conf. on Computer Aided Verification,
pages 519–531, 2007.

[26] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo. Spade:
the System S declarative stream processing engine. In SIGMOD
Conference, pages 1123–1134, 2008.

[27] D. Giannakopoulou, Z. Rakamaric, and V. Raman. Symbolic learning
of component interfaces. In 19th Int. Symp. on Static Analysis, pages
248–264, 2012.

[28] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated ran-
dom testing. In Proc. of the ACM SIGPLAN 2005 Conf. on Program-
ming Language Design and Implementation, pages 213–223, 2005.

[29] M. I. Gordon, W. Thies, and S. P. Amarasinghe. Exploiting coarse-
grained task, data, and pipeline parallelism in stream programs. In
Proc. of the 12th Int. Conf. on Architectural Support for Programming
Languages and Operating Systems, pages 151–162, 2006.

[30] S. Graf and H. Saidi. Construction of abstract state graphs with PVS.
In Proc. of the 9th Int. Conf. on Computer Aided Verification, pages
72–83, 1997.

[31] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, and S. K.
Rajamani. SYNERGY: a new algorithm for property checking. In
Proc. of the 14th ACM SIGSOFT Int. Symp. on Foundations of Soft-
ware Engineering, pages 117–127, 2006.

[32] J. Gummaraju, J. Coburn, Y. Turner, and M. Rosenblum. Streamware:
programming general-purpose multicore processors using streams. In
Proc. of the 13th Int. Conf. on Architectural Support for Programming
Languages and Operating Systems, pages 297–307, 2008.

[33] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown. MiBench: A free, commercially representative em-
bedded benchmark suite. In Proc. of the Workload Characterization.
WWC-4 IEEE Int. Workshop, pages 3–14, 2001.

[34] P. Habermehl and T. Vojnar. Regular model checking using inference
of regular languages. Electr. Notes Theor. Comput. Sci., 138:21–36,
2005.

[35] A. Hagiescu, W.-F. Wong, D. F. Bacon, and R. M. Rabbah. A comput-
ing origami: folding streams in FPGAs. In Proc. of the 46th Design
Automation Conference, pages 282–287, 2009.

[36] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstrac-
tion. In Proc. of the 29th ACM SIGPLAN-SIGACT Symp. on Principles
of Programming Languages, pages 58–70, 2002.

[37] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes.
Fast and precise sanitizer analysis with BEK. In USENIX Security
Symposium, 2011.

[38] J. E. Hopcroft. On the equivalence and containment problems for
context-free languages. Theory of Computing Systems, 3:119–124,
1969.

[39] A. Hormati, M. Kudlur, S. A. Mahlke, D. F. Bacon, and R. M. Rabbah.
Optimus: efficient realization of streaming applications on FPGAs. In
Proc. of the 2008 Int. Conf. on Compilers, Architecture, and Synthesis
for Embedded Systems, pages 41–50, 2008.

[40] F. Howar, B. Steffen, B. Jonsson, and S. Cassel. Inferring canonical
register automata. In Proc. of the 13th Int. Conf. on Verification, Model
Checking, and Abstract Interpretation, pages 251–266, 2012.

[41] O. H. Ibarra. The unsolvability of the equivalence problem for ε-
free NGSM’s with unary input (output) alphabet and applications. In
Proc. of the 18th Annual Symp. on Foundations of Computer Science,
pages 74–81, 1977.

[42] R. Jhala and K. L. McMillan. A practical and complete approach to
predicate refinement. In Proc. of the 12th Int. Conf. on Tools and
Algorithms for the Construction and Analysis of Systems, pages 459–
473, 2006.

[43] U. J. Kapasi, W. J. Dally, S. Rixner, J. D. Owens, and B. Khailany. The
imagine stream processor. In Proc. of the 20th Int. Conf. on Computer
Design, VLSI in Computers and Processors, pages 282–288, 2002.

[44] M. Kudlur and S. A. Mahlke. Orchestrating the execution of stream
programs on multicore platforms. In Proc. of the ACM SIGPLAN 2008
Conference on Programming Language Design and Implementation,
pages 114–124, 2008.

[45] A. A. Lamb, W. Thies, and S. P. Amarasinghe. Linear analysis and
optimization of stream programs. In Proc. of the ACM SIGPLAN 2003
Conference on Programming Language Design and Implementation,
pages 12–25, 2003.

[46] D. Lee and M. Yannakakis. Principles and methods of testing finite
state machines-a survey. In Proc. of the IEEE, volume 84, pages 1090–
1123, 1996.

[47] S.-W. Liao, Z. Du, G. Wu, and G.-Y. Lueh. Data and computation
transformations for Brook streaming applications on multiprocessors.
In Proc. of the 4th IEEE/ACM Int. Symp. on Code Generation and
Optimization, pages 196–207, 2006.

[48] P. Prabhu, G. Ramalingam, and K. Vaswani. Safe programmable
speculative parallelism. In Proc. of the 2010 ACM SIGPLAN Conf. on
Programming Language Design and Implementation, pages 50–61,
2010.

[49] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing
engine for C. In Proc. of the 10th European Software Engineering
Conf. held jointly with 13th ACM SIGSOFT Int. Symp. on Foundations
of Software Engineering, pages 263–272, 2005.

[50] M. Shahbaz and R. Groz. Inferring Mealy machines. In Proc. of the
2nd World Congress on Formal Methods, pages 207–222, 2009.

[51] R. Singh, D. Giannakopoulou, and C. S. Pasareanu. Learning compo-
nent interfaces with may and must abstractions. In Proc. of the 22nd
Int. Conf. on Computer Aided Verification, pages 527–542, 2010.

[52] R. Soulé, M. Hirzel, R. Grimm, B. Gedik, H. Andrade, V. Kumar, and
K.-L. Wu. A universal calculus for stream processing languages. In
Programming Languages and Systems, 19th European Symposium on
Programming, pages 507–528, 2010.

[53] W. Thies and S. P. Amarasinghe. An empirical characterization of
stream programs and its implications for language and compiler de-
sign. In Proc. of the 19th International Conference on Parallel Archi-
tecture and Compilation Techniques, pages 365–376, 2010.

[54] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt: A lan-
guage for streaming applications. In Proc. of the 11th International
Conference on Compiler Construction, pages 179–196, 2002.

[55] W. Thies, V. Chandrasekhar, and S. P. Amarasinghe. A practical
approach to exploiting coarse-grained pipeline parallelism in C pro-
grams. In 40th Annual IEEE/ACM Int. Symp. on Microarchitecture,
pages 356–369, 2007.

[56] A. Udupa, R. Govindarajan, and M. J. Thazhuthaveetil. Software
pipelined execution of stream programs on GPUs. In Proc. of the
7th Int. Symp. on Code Generation and Optimization, pages 200–209,
2009.

[57] M. Veanes, D. Molnar, B. Livshits, and L. Litchev. Generating fast
string manipulating code through transducer exploration and SIMD in-
tegration. Technical Report MSR-TR-2011–124, Microsoft Research,
2011.

[58] J. M. Vilar. Query learning of subsequential transducers. In Proc. of
the 3rd Int. Colloquium on Grammatical Inference: Learning Syntax
from Sentences, pages 72–83, 1996.

