
A Scalable, Flow-and-Context-Sensitive Taint Analysis
of Android Applications.

Wontae Choi∗, Jayanthkumar Kannan1,∗, Domagoj Babic∗

Google Inc. 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA

Abstract

This paper focuses on scalable static analysis techniques for finding information
leaks in Android apps. Finding such leaks scalably is challenging because An-
droid apps have on average over 100 invocations of sensitive APIs, yielding a
massive multi-source taint analysis problem.

We present the design of STAR, a context-sensitive and flow-sensitive multi-
source taint analysis aimed at tackling this problem. STAR incorporates two
main ideas to achieve high performance and scalability. The first is a novel
summarization technique we refer to as symbolic summarization, which is crucial
for the analysis to scale well with the number of source APIs. The second is a
combination of techniques aimed at efficient propagation of abstract states both
within and across method boundaries. Our experiments over a dataset composed
of 400, 000 apps show that the proposed techniques improve performance over
an IFDS-style analysis by a factor of 30 on average, and by up to four orders of
magnitude on large apps.

Keywords: Android, taint analysis, summarization, scalability

Declaration of Interest

We confirm that the manuscript has been read and approved by all named
authors. The work has been supported by Google Inc. The manuscript has
been reviewed and approved via the internal review process of our institution,
and there are no impediments to the submission with respect to intellectual
property.

∗Corresponding authors: Wontae Choi and Domagoj Babic
Email addresses: wtchoi@google.com (Wontae Choi), dbabic@google.com (Domagoj

Babic)
1The work has been done while the author was working at Google.

Preprint submitted to Computer Languages, Systems & Structures August 30, 2018

1. Introduction

Smartphones are an important part of modern life, and so is the problem of
smartphone security. Users entrust their smartphone apps with personal and
private information. Deliberate or mistaken release of that data to untrusted
parties without users’ consent is highly undesirable and can significantly impact
the trust users place in the security of the entire ecosystem. Therefore, app
stores have strong incentives to prevent such undesired data leakage.

Finding apps that expose user data is a hard problem. App stores typically
employ a variety of techniques such as dynamic analysis, machine learning, and
static analysis. This paper focuses on static taint analysis techniques to find
such information leaks in the context of the Android ecosystem.

In the Android app store setting, there are three aspects of the information
leak problem that make it challenging. First, the number of relevant sensitive
APIs in the Android framework is large, resulting in a massive multi-source taint
analysis problem. In our evaluation corpus, Android apps had 115 invocations
of sensitive APIs on average (the 99th percentile is 1244). Second, an app
uploaded by a developer has to be analyzed before it is allowed to be published
on the store. To minimize the app publishing delay, the analysis time is severely
limited. Third, the scale of the problem is immense. Popular app stores have
over a million apps, many of which are updated daily. The size of apps varies
from a thousand to a few hundred thousand classes.

While taint analysis has received considerable attention (e.g., [3, 14, 21, 41,
37]), our focus is specifically on the multi-source setting. We focus on the design
and evaluation of taint analysis algorithms that can handle multiple sources
efficiently and scale well to a production system with strict time budgets and
resource constraints.

We present STAR — Scalable Taint Analyzer for AndRoid — a context-
sensitive and flow-sensitive multi-source taint analysis. STAR is an instance of
the interprocedural, finite, distributive, subset framework (IFDS framework) [34]
and we describe its design in terms of abstract semantics. The analyzer is capa-
ble of analyzing 77% of 400, 000 Android apps sampled from Google Play Store
within a per-app time budget of four hours. More generally, the techniques we
propose are applicable to any Java program. We make three novel contributions
in the design and evaluation of STAR.

The first contribution is a novel summarization technique we refer to as sym-
bolic summarization. This is inspired by the Reps-Horowitz-Sagiv tabulation
algorithm (RHS algorithm) [34] and polymorphic type-and-effect systems [22].
The technique is based on two key insights: (a) the symbolic method summary
is parametric, which allows the analysis to avoid performing redundant com-
putation, and (b) the summary captures global state changes (sensitive data
propagated to sinks) as an effect to supplement the input-output mapping.
Symbolic summarization is crucial for the analysis to scale with the number
of source APIs of interest.

The second contribution is a set of techniques aimed at efficient propaga-
tion of abstract states during the computation. These techniques include es-

2

cape analysis [6, 7, 44], access-based localization [28], and bypassing [27]. The
idea behind these techniques are not new. Our contribution is applying these
techniques to optimize an IFDS-style taint analysis, which is an opportunity
overlooked by the previous approaches [3, 42]. We identify three types of un-
necessary propagation that frequently happen while analyzing taint flows in
Android apps, and select optimization techniques that can be seamlessly inte-
grated into an IFDS-style taint analysis. In case of escape-analysis, we report
a simple but novel analysis technique that is specifically designed to detect
temporary local objects, such as intermediate string values and StringBuilder
objects. We find that a large portion of temporary objects are local to their
allocation sites; therefore, the analysis does not need to propagate information
about such objects beyond the allocation sites.

The third contribution is our large-scale evaluation of taint analysis on
400, 000 applications. We note that the precision of IFDS-based taint analysis
approaches is well studied (e.g., [3]), and our focus in this paper is on perfor-
mance and scalability. The dataset we used for this purpose is one of the largest
reported in academic literature, and we believe it sheds light on the efficacy and
practicality of taint analysis under tight production constraints, and can help
guide further research in this area.

2. Overview

2.1. Preliminaries

2.1.1. Taint Analysis

Taint analysis tracks flow of information through a program. The goal is to
determine whether the result of a sensitive source API call (e.g., accessing user’s
contacts) can influence an argument passed to a sink API (e.g., a network write).
Any such influence might allow adversaries to infer users’ sensitive data based
on observations of the sink API arguments. In this work, we ignore information
leaks due to control dependence — a common assumption used in practice.
Under that assumption, the relevant semantics are that a value is considered
tainted if: (1) it is the result of a sensitive API, or (2) it is computed using a
tainted value.

Consider the following simple example program, where the sensitive values
computed by expressions α and β are assigned to variable x. Expressions α and
β correspond to sensitive API calls and are called taint sources. The expression
SINK corresponds to sensitive API calls that reveal information to the adver-
sary. The question mark in the second line denotes an arbitrary conditional
expression:

1 : int x=α;
2 : if(?) x=β;
3 : SINK(x);

One way to implement a static taint analysis is to use taint facts to track a
tainted predicate for all program state (variables on the stack, objects on the
heap, globals). A taint fact is a tuple 〈x, α〉 indicating a memory location x

3

is tainted by a source API α. For the given program, the taint fact 〈x, α〉 will
be generated for line 1, which means that variable x may contain information
from source α. Similarly, the taint fact 〈x, β〉 will be generated for line 2. A
flow-sensitive analysis would merge the information flowing from line 1 and line
2, and the taint fact set {〈x, α〉, 〈x, β〉} will be propagated to line 3. The static
analyzer can therefore infer that information from sources α and β may leak to
SINK.

2.1.2. IFDS Framework and RHS Algorithm

In the taint analysis approach as framed above, we assume that the points-
to analysis is performed before the taint analysis, and the taint facts can refer
to abstract heap locations. This assumption has two important consequences.
First, the abstract domain (set of taint facts) is a powerset domain. Second,
the abstract transfer function for taint propagation can be easily seen to be
distributive.2 The category of static analysis problems satisfying the above two
properties is referred to as the IFDS [34] framework.

For problems that fall in the IFDS framework, there exists an efficient al-
gorithm, the Reps-Horowitz-Sagiv tabulation solver [34] or RHS 3, to obtain a
fully flow-and-context-sensitive solution. It leverages the distributivity of the
transfer function over the powerset domain P = 2D to generate summaries that
map from elements of the domain D to P . For instance, in the case of taint
analysis, the set D includes all possible taint facts 〈x, α〉 and thus |D| is upper-
bounded by the product of the number of abstract memory locations and taint
sources.

The number of summary entries is linear in |D|, and the RHS algorithm
has a complexity of O(E|D|3) where E is the number of edges in the super
graph [34], which is obtained by adding inter-procedural call and return edges
to the control flow graphs for each method.

Let us consider a simple program to explain the intuition behind the RHS
algorithm:

x.foo(α+β); x.foo(α+γ);

The example program involves multiple invocations to the same method. Here
α, β, and γ are distinct taint sources (i.e., expressions computing sensitive
information). Let y be the formal parameter of method foo. A taint analysis
will propagate two taint facts 〈y, α〉 and 〈y, β〉 to the body of method foo at the
first callsite. Let Tα and Tβ be the set of output taint facts for foo respectively
for each input taint fact α, β. The RHS algorithm creates point-wise summaries
for method foo as follows:

summary(foo) = [〈y, α〉 7→ Tα, 〈y, β〉 7→ Tβ]

At the second callsite, method foo has to be re-analyzed with a different set of
input taint facts (〈y, α〉 and 〈y, γ〉). Although this input combination is new,

2 Given abstract domain D, abstract transfer function F : D → D is distributive iff
∀a, b ∈ D.F (a t b) = F (a) t F (b).

3As far as we know, the name RHS has first used by Ball et al. [5].

4

the RHS algorithm can apply a part of the above summary (〈y, α〉 7→ Tα), but
has to re-analyze foo with the new taint fact 〈y, γ〉.

2.2. Symbolic Summarization with Effect

We now point out a specific type of redundant computation performed by
the RHS algorithm when applied to taint analysis, and then present a new
technique — symbolic summarization with effect — to address this issue.

Motivating example. The RHS algorithm performs redundant computation when
a method has to be analyzed with similar yet different inputs. Let us recon-
sider the example with method foo in the previous section. In the example,
for similar input taint facts 〈y, α〉, 〈y, β〉, and 〈y, γ〉, the taint analysis behaves
identically since the transformers either (1) simply propagate the input taint, or
(2) generate taints depending on source APIs in the method. In the first case,
the only difference is the taints being propagated (α, β, or γ). In the second
case, the generated taint does not depend on the input taint fact at all. Thus,
it suffices to analyze the body of method foo only once for the first input taint
fact (〈y, α〉) and reuse the result for the rest. Our new technique is based on
this observation.

Symbolic reasoning. The desired effect is achieved by introducing the notion of
a symbolic taint source. When analyzing method foo for the first time, instead
of using input taint fact 〈y, α〉, we use the taint fact 〈y, ?〉 obtained by replacing
the concrete taint source α with a symbolic taint source ?. This allows us to
generate the following general summary:

summary(foo) = [〈y, ?〉 7→ T?]

where T? is the corresponding analysis result for method foo. This general-
ized summary can be reused for all three input taint facts by substituting the
symbolic taint source ? by the corresponding concrete taint source (α, β, or γ).
Note that the summary is polymorphic only with respect to the taint source,
and does not attempt to generalize across memory locations. Therefore, this
technique applies even if the method has multiple parameters.

Effects. The above symbolic summary suffers from a limitation — it conveys
the propagation semantics of the taint, but it is not sufficient to deduce the set
of sink APIs by which method foo can leak tainted data. Since, in the symbolic
setting, the method foo is analyzed only once with a symbolic taint source, it
cannot report the leak from a concrete taint source. We solve this problem by
augmenting the summary with a set of sink APIs (or program points) to which
the method leaks the sensitive information. The full summary for method foo

has the following form:

summary(foo) = [〈y, ?〉 7→ (T?, R?)]

Conceptually, R? is a set of sink APIs (or program points) to which the source
API information is leaked during the execution of the method, when parameter

5

y is tainted. This can be computed while analyzing the body of the method, and
used at the callsites of the method to generate precise warnings in combination
with the exact input taints available at the callsites. We refer to R? in the
summary as effect, analogous to the effect in the type-and-effect system [22].

Relation to IDE. We now explain the relation of the symbolic summarization
technique to the interprocedural distributive environment-transformer frame-
work (IDE framework) [36]. It is possible to implement the taint analysis via
the IDE framework by treating sink expressions as virtual variables and source
expressions as values. However, this would still be inefficient because the tabu-
lation solver for IDE has O(E|S|2|L|3) time complexity for our problem, where
S is the set of source expressions and L is the set of abstract memory loca-
tions (variables + abstract objects).4 Although this is an improvement over
the complexity of a näıve IFDS-style implementation, which is O(E|S|3|L|3),5

symbolic summarization provides an even more significant improvement. The
effect of symbolic summarization is to make |S| very small, effectively decreasing
the complexity of the analysis to O(E|L|3). While STAR has better worst-case
complexity, the question on how the empirical complexity of the two approaches
compares remains open and is an opportunity for future work.

Other applications. The symbolic summarization technique can be applied to
any IFDS problem meeting the following additional requirements:

• The abstract domain is a Cartesian product of multiple domains, i.e.,
D = D1 × · · · ×Dn.

• There exists a subdomain Di of D, such that all abstract transfer func-

tions (f) satisfy the following condition: ∀a, b ∈ D . ∀x, y ∈ Di .
((
a =

(b[x/y])
)

=⇒
(
f(a) = (f(b))[x/y]

))
, where b[x/y] denotes the result of

replacing all occurrence of x in b with y.

If the above conditions hold, the analysis can freely replace the i-th component of
an abstract state with a symbolic abstract value. Taint analysis and dependency
analysis are typical problems satisfying these requirements.

4 The original IDE paper [36, p. 151] states that the time complexity of the IDE solver is
O(E|L|3), where the constant of proportionality depends on the height of the micro transfer
function domain. The micro transfer function domain for our problem is determined by the
input program, unlike program-independent examples given in the original IDE paper. In
the multi-source taint propagation problem, micro transfer functions are elements of a map
domain S → S, and the height of the domain is |S|2, where S is the set of source instructions.
Taking this into account, the time complexity of the IDE solver for our problem becomes
O(E|S|2|L|3).

5The time complexity of the RHS algorithm for the IFDS framework is O(E|D|3) where
|D| is the size of the abstract domain. For the taint analysis, |D| = |S||L|.

6

Syntactic Components
x, y, z, ret ∈ Var l ∈ Label f ∈ Field α, β, γ ∈ Src
Stmt s ::= l : c | s1; s2 | choose(s1, s2)
Cmd c ::= x=y | x=y.f | x.f=y | return x | x=y.f(z) | x=α | sink(x)

Abstract Program
program ::= (s, pointsTo, callee)

pointsTo ∈Label×L̂oc→2Ôbj

callee ∈Label→MID×Var×Stmt

` ∈ L̂oc = Ôbj×Field+Var

o ∈Ôbj
m ∈MID (method id)

Figure 1: Model language definition.

2.3. State Pruning

While eliminating some redundancy, symbolic summarization cannot elimi-
nate all unnecessary information propagation inherent in the analysis. Consider
the example:

1 : int x = α;
/ / hundreds of lines without using x

n : SINK(x);

A näıve flow-sensitive analysis implementation would generate the taint fact
〈x, α〉 at line 1, then propagate the taint fact to line n through the irrelevant code
block in between. Inefficiency is introduced by the unnecessary propagation of
the taint fact through the irrelevant code block. STAR mitigates unnecessary
propagation via three light-weighted state-pruning techniques: access-based lo-
calization [28], bypassing [27], and escape-analysis [7, 44, 6].6

The ideas of state-pruning techniques are not new. Yet, the opportunity of
applying them to an IFDS-style taint analysis has been overlooked. We find
that even an IFDS-style analysis performs a non-trivial amount of unnecessary
propagation, and state-pruning techniques are still useful to avoid such wastage.
With regards to state-pruning, our contribution is to (1) identify a combination
of techniques that work well together for our problem, and (2) propose a new
escape-analysis tuned for Android taint analysis. Section 6 explains details of
pruning techniques that have been implemented in STAR.

3. Taint Analysis: The Baseline

In this section, we formally define the baseline taint analysis, which we
gradually improve on in the following sections.

3.1. Model Language

For the formal description of our analyses, we use a loop-free and recursion-
free object-oriented model language shown in Fig. 1. Since the abstract domain
for taint analysis is finite, loops and recursions do not pose a challenge. The

6 Note that sparse-analysis [29, 23], a state-of-the-art state-pruning technique, is not ap-
plicable because the cost of heap-SSA construction, a pre-processing step required to perform
sparse-analysis, is simply too expensive computationally.

7

language is specialized to simplify exposition of a staged static analysis relying
on a pre-analysis for computing call graph and points-to information.

Program statements (s) are uniquely labeled commands (l : c), sequences
(s1; s2), and branches (choose(s1, s2)). Commands include reads/writes to local
variables and object fields, method returns/calls, APIs that reveal sensitive
information, and APIs that can potentially leak information.

In the model language, a program is composed of three components: the
body of the entry point method (s), points-to oracle pointsTo, and call-graph
oracle callee. The class of taint analysis we consider depends on pre-computed
call-graph oracle and points-to oracle to resolve function calls and aliasing. The
oracles make class definitions and object creation statements (new) irrelevant
for our analysis.

Call-graph oracle. callee(l) = (m,x, s) denotes that call-graph oracle callee has
determined that method with ID m is invoked at the callsite labeled l, and
the method has formal parameter x and body statement s. For simplicity of
presentation, we assume a context-insensitive call-graph construction algorithm
(e.g., VTA [39]) and that each callsite has exactly one callee.

Points-to oracle. We denote the set of abstract heap objects computed by the
points-to analysis as Ôbj. At the program point l, pointsTo(l, `) returns the set
of abstract objects that may be pointed to by abstract location `. An abstract
location ` is either a variable (x) or a tuple of abstract object and field (o.f),
where o is an abstract object representing a group of concrete objects. Note that
our memory model is different from purely access-path based model [3, 42]. In
our memory model, aliasing between access-paths is implicitly handled by ab-
stract objects; If two access-paths are pointing to the same abstract object, they
are aliased. In contrast, in a purely access-path based memory model, aliasing
of access-paths needs to be tracked explicitly. For simplicity of presentation, we
assume that abstract objects are disjoint, i.e., each concrete object is mapped
to exactly one abstract object, and the object abstraction does not change dur-
ing the analysis 7. Similarly, we assume a context-insensitive points-to-analysis
(e.g., Steensgaard’s [38]).

Multiple dispatch and multiple parameters. For simplicity, we restrict our pre-
sentation to only consider a single dispatch and a single parameter. At the end
of the following section, we explain how the analysis can be extended to remove
these restrictions. Our implementation does handle these cases as well.

Tainted references. Though our semantics below assumes that only memory
locations of primitive type can have taint labels, our implementation associates
taint labels with memory locations of object reference type as well (for more
details, see Section 7.2). The semantics that we present can be extended to this
case as well by simple extensions to handle accesses to such tainted references.

7 With a flexible object abstraction (e.g., recency abstraction [4]), object manipulating
statements cannot be ignored because they may generate or kill taint facts.

8

Semantic Components
TaintFact t ::= 〈`, α〉 | Λ
TaintFactSet T ∈ 2TaintFact

TaintReport R ∈ 2Label×Src

Abstract Transformer

[Assign]
T ′ = (T |−{x}) ∪ {〈x, α〉 | α ∈ T (y)}

T ` l : x = y → T ′, ∅

[Load]
T ′ = (T |−{x}) ∪ {〈x, α〉 | o ∈ pointsTo(l, y), α ∈ T (o.f)}

T ` l : x = y.f → T ′, ∅

[Store]
T ′ = T ∪ {〈o.f, α〉 | α ∈ T (y), o ∈ pointsTo(l, x)}

T ` l : x.f = y → T ′, ∅

[Taint]
Λ ∈ T T ′ = (T |−{x}) ∪ {〈x, α〉}

T ` l : x = α→ T ′, ∅

[Sink]
R = {(l, α) | α ∈ T (x)}
T ` l : sink(x)→ T,R

[Return] T ` l : return x→ T ∪ {〈ret, α〉 | α ∈ T (x)}

[Choose]
T ` s1 → T1, R1 T ` s2 → T2, R2

T ` choose(s1, s2)→ T1 ∪ T2, R1 ∪R2

[Seq]
T ` s1 → T1, R1 T1 ` s2 → T2, R2

T ` s1; s2 → T2, R1 ∪R2

[Invoke]

callee(l) = (m,xm, sm)

Tin = (T [z/xm])|−
Var\{xm}

Tin ` sm → Tout, R Tret = (Tout[ret/x])|−
Var\{x}

T ` l : x = y.f(z)→ (T |−{x}) ∪ Tret, R

Figure 2: The baseline analysis specification.

9

3.2. The Analysis Definition

We now provide the definition of a baseline analysis implementing fully flow-
and-context-sensitive taint analysis. The analysis serves as a starting point to
derive a more scalable analysis. Fig. 2 provides the formal definition of the
semantic components and the abstract semantics of the analysis.

Domain. A taint fact t is either a tuple consisting of an abstract location and a
taint source (〈`, α〉), or the sentinel (Λ). Taint fact 〈`, α〉 denotes that abstract
location ` (of primitive type) may contain information tainted by sensitive API
α. The sentinel (Λ) represents the fact that the relevant program point is
reachable. The analysis uses this to avoid analyzing unreachable expressions. T
denotes a set of taint facts. We use T (`) to denote the set of taint sources that
may affect location ` (i.e., T (`) = {α | 〈`, α〉 ∈ T}). We define restriction and
substitution operations as follows:

T |X
def
= {〈`, α〉 | α ∈ T (`), ` ∈ X} ∪ (T ∩ {Λ})

T |−X
def
= {〈`, α〉 | α ∈ T (`), ` 6∈ X} ∪ (T ∩ {Λ})

T [`1/`2]
def
= (T |−{`1}) ∪ {〈`2, α〉 | α ∈ T (`1)}

A taint analysis generates a taint report R, which is a set of pairs consisting
of an instruction label and a source. Each element (l, α) of a taint report encodes
that information from source α may leak to the sink instruction with label l.

Abstract transformer. The abstract transformer for statements is defined by
the judgment T ` s→ T ′, R. It denotes that statement s transfers set of input
taint facts T to set of output taint facts T ′ and generates report R.

Assignment, load, store, and source API statements propagate taints from
the right-hand side location to the left-hand side location. If the left-hand
side is a variable (assignment, load, taint, and invoke statements), the analysis
performs a strong update. Note that these statements apply to primitive values.
Our analysis depends on the points-to oracle to reason about objects. Also note
that the [Taint] rule checks whether the set of input taint facts includes the
sentinel, avoiding analysis of unreachable source expressions.

Sink statements generate a taint report using the taints associated with the
parameter. Return statements propagate taints of the return parameter to the
special placeholder variable ret . We assume that variable ret does not appear
in any program. Handling of branch and sequence statements is standard. For
branch statements, each branch body is analyzed separately, and the results are
merged. For sequence statements, the judgments are applied in sequence.

Handling of the invoke statements involves several projections. The set of
input taint facts at the callsite is obtained by substituting the argument of the
caller for the callee’s formal parameter and then filtering out taint facts related
to the caller’s local variables. The body of the callee method is analyzed using
the projected set of input taint facts. The analysis result of the body of the
callee is projected back to the callsite, by removing taint facts about the callee’s
local variables and by substituting place holder variable ret with the actual
return variable of the callsite.

10

Soundness. A taint analysis is sound if and only if it captures all information
leaks across all potential concrete executions. In this paper, we focus on proving
that the symbolic summarization based analysis is preserving the soundness of
the baseline analysis. The formal definitions of information leak, capturing,
and soundness, as well as the proof of the soundness preservation theorem are
available in Section 5.3.

Supporting multiple dispatch and multiple parameters. Now we explain how to
support multiple dispatch and multiple parameters. With multiple dispatch
and multiple parameters, callee may return a set of tuples, and each tuple may
contain a set of formal parameters. Both can be supported by modifying the
[Invoke] rule. Multiple dispatch can be handled by first analyzing each tuple
separately, then merging the resulting taint fact sets and reports to form the
final result. Multiple parameters can be supported by modifying the way Tin is
computed. Assume that a method having a sequence of parameters (x1

m, . . . , x
n
m)

is invoked with a sequence of arguments (z1, . . . , zn) where each zi is a variable
visible at the callsite. Then, Tin = (T [z1/x

1
m] . . . [zn/x

n
m])|−Var\{x1

m,...,x
n
m}

.

4. IFDS Formulation

In this section, we lift the baseline analysis by leveraging the IFDS frame-
work. In practice, we found that the performance of the lifted analysis (vanilla
IFDS-style analysis) is not satisfactory, which led us to develop various opti-
mizations introduced in the subsequent sections.

4.1. The Analysis Definition

Fig. 3 provides a reformulation of the baseline abstract semantics in terms
of the IFDS framework.

Pointwise summary. The new formulation uses summaries (S). A summary is
a map from a pair of a method identifier and an input taint fact (at method en-
try) to a set of taint facts (or bottom) at method exit. It encodes how methods
propagate taints through their execution. Bottom (⊥) indicates that the map-
ping is undefined for the corresponding key (i.e., the summary is not available
for that particular input). The empty summary (denoted []) maps every method
identifier and taint fact to ⊥ (i.e., ∀m, t.[](m, t) = ⊥). Function summaries form
an abstract domain where the empty summary is bottom. The join operator t
and order operator v are point-wise extensions of the corresponding operations
over sets:

S1 t S2(m, t)
def
= S1(m, t) ∪ S2(m, t)

S1 v S2
def
= ∀m, t.S1(m, t) ⊆ S2(m, t)

11

Semantic Components
Summary S ∈MID × TaintFact→ 2TaintFact ∪ {⊥}

Abstract Transformer

[Cmd]
c 6≡ x = y.f(z) T ` l : c→ T ′, R

S, T ` l : c→ S, T ′, R

[Seq]
S, T ` s1 → S1, T1, R1 S1, T1 ` s2 → S2, T2, R2

S, T ` s1; s2 → S2, T2, R1 ∪R2

[Choose]
S, T ` s1 → S1, T1, R1 S, T ` s2 → S2, T2, R2

S, T ` choose(s1, s2)→ S1 t S2, T1 ∪ T2, R1 ∪R2

[Invoke]

callee(l) = (m,xm, sm)

Tin = (T [z/xm])|−
Var\{xm}

∀ti ∈ Tin.S, ti `∗ m : sm → Si, Ti, Ri

Tout = ∪Ti T ′ = (T |−{x}) ∪ (Tout[ret/x]) S
′ = tSi R′ = ∪Ri

S, T ` l : x = y.f(z)→ S
′, T ′, R′

Summary Lookup

[Hit]
S(m, t) = T

S, t `∗ m : s→ S, T, ∅

[Miss]

S(m, t) = ⊥
S, {t} ` s→ S

′, T ′, R Tret = T ′|−
Var\{ret} S

′′ = S
′ t [(m, t) 7→ Tret]

S, t `∗ m : s→ S
′′, Tret, R

Figure 3: The IFDS-style analysis specification. The highlighted portion denotes the summary
lookup judgement.

Semantic Components
S ∈MID × TaintFact→ (2TaintFact × TaintReport) ∪ {⊥}

Summary Lookup

[MissΛ]

S(m,Λ) = ⊥
S, {Λ} ` s→ S

′, T ′, R Tret = T ′|−
Var\{ret} S

′′ = S
′ t [(m,Λ) 7→ (Tret, ∅)]

S,Λ `∗ m : s→ S
′′, Tret, R

[Miss?]

S(m, 〈`, ?〉) = ⊥
S, {〈`, ?〉} ` s→ S

′, T ′, R Tret = T ′|−
Var\{ret} S

′′ = S
′ t [(m, 〈`, ?〉) 7→ (Tret, R)]

Tinst = {〈`, α〉 | 〈`, ?〉 ∈ Tret} Rinst = {(l, α) | (l, ?) ∈ R}
S, 〈`, α〉 `∗ m : s→ S

′′, Tinst, Rinst

[HitΛ]
S(m,Λ) = (T, ∅)

S,Λ `∗ m : s→ S, T, ∅

[Hit?]
S(m, 〈`, ?〉) = (T,R) Tinst = {〈`, α〉 | 〈`, ?〉 ∈ T} Rinst = {(l, α) | (l, ?) ∈ R}

S, 〈`, α〉 `∗ m : s→ S, Tinst, Rinst

Figure 4: Symbolic summarization specification. Note that taint facts may now also contain
symbolic taint (?).

12

Abstract transformer. The abstract transformer judgment S, T ` s→ S′, T ′, R
denotes that statement s transforms input summary S and input taint set T
to output summary S′ and output taint set T ′, and generates taint report R.
The transfer function is a straightforward extension of the transfer functions in
Fig. 2 (handled by the [Cmd] rule), with a few differences. First, the [Seq] and
[Choose] rules are extended to update the summary. Second, when handling
a method call, [Invoke] treats each taint fact in the set of incoming taint facts
point-wise (highlighted line in Fig. 3). The handling of each input taint fact is
delegated to the summary lookup judgment.

The summary lookup judgment S, t `∗ m : s→ S′, T,R means that state-
ment body s of method m receives input taint fact t and input summary S,
and generates updated summary S′, output taint set T , and report R. The
judgment has two cases: If the input taint fact was observed before, the entry
value is reused ([Hit]). The method body is analyzed only if the input taint
fact is not observed yet ([Miss]).

5. Symbolic Summarization

This section describes the symbolic summarization technique, which aims
to remove redundant computation performed by the IFDS-style analysis. We
start with a formal definition, and then explain the idea with an example. The
resulting analysis is sound w.r.t. the baseline analysis.

5.1. The Analysis Definition

Symbolic summarization. Fig. 4 defines symbolic point-wise summary-based
taint analysis. The summary is now redefined to have a taint report as an
effect. A taint report is a set of sink APIs. Similar to the domain for IFDS-style
analysis, the set of summaries constitutes an abstract domain. The join and
order operators are point-wise extensions.

Abstract transformer. The new transfer function differs from IFDS-style seman-
tics only with respect to function summaries. The summary lookup judgment
has four cases. [Hit?] and [Miss?] rules handle summary lookup when the in-
put taint fact is a usual taint fact (i.e., not Λ). Intuitively, these rules cover
the input-dependent behavior of the target method. Both cases use a symbolic
input taint fact (〈`, ?〉) to lookup the method summary. If the lookup suc-
ceeds ([Hit?]), the resulting set of output taint facts and the taint report are
instantiated and returned. The instantiation process substitutes the symbolic
taint source ? with the actual taint source α at the callsite. If the lookup fails
([Miss?]), the body of the target method is analyzed with the symbolic input
taint fact. The summary is updated with the resulting output taint fact and
taint report without instantiation, while the instantiated version is returned to
the callsite.

Other cases are handled by [HitΛ] and [MissΛ] rules. These rules cover the
input-independent behavior of the target method. If the lookup succeeds, the

13

1 static int foo(int w){

2 SINK(w);

3 SINK(γ);
4 return w + γ;
5 }

6 static void bar(){

7 int x, y;

8 x = foo(α);
9 y = foo(β);

10 }

Summary of foo (RHS style)

input facts output facts
〈w,α〉 {〈ret, α〉}
〈w, β〉 {〈ret, β〉}

Λ {〈ret, γ〉,Λ}

Summary of foo (symbolic)

input facts output facts effect
〈w, ?〉 {〈ret, ?〉} {(2, ?)}

Λ {〈ret, γ〉,Λ} { }

Figure 5: Example Java program composed of two static methods from a single class. α, β,
and γ are source expressions of int type computing sensitive information. SINK leaks sensitive
information.

lookup results are directly returned to the callsite. If it fails, the body of the
method m is analyzed, the summary is updated, and the result is returned to
the callsite. Note that the taint report obtained by analyzing the method body
is not added to the method summary. When the sentinel fact is the only input
taint fact for the method, the resulting taint report cannot have a symbolic
entry.8 This implies that the taint report need not be added to the summary.

Properties. The symbolic summarization based analysis is sound and complete
w.r.t. the baseline analysis, i.e., they compute the same taint report. The proof
is in Section 5.3. The analysis uses finite domains, and the transformer is
monotonic. Hence, the analysis always terminates. The monotonicity of the
transformer can be proved by induction on the height of the derivation tree.

5.2. Example Run of the Analysis

We use the program in Fig. 5 to illustrate how the symbolic summarization
works. The example program has two methods foo and bar. The foo method
leaks the input parameter w and the local source API γ to a SINK. Then it
returns the sum of w and γ. Note that γ is a source API. Method bar is the
entry point of the program, and it invokes method foo twice with different
inputs. The return values are assigned to local variable x and y. During the
execution of the program, the information of source APIs α and β leak to SINK

at line 2. Let us follow the analysis step by step.

Step 1: line 7. The analysis of the entry point starts with a singleton set con-
taining the sentinel taint fact {Λ}. Line 7 merely propagates {Λ} to the next
line.

8 To be more precise, if the input taint fact is concrete (i.e., it is the sentinel or a taint fact
with concrete taint source), the analysis yields a concrete output taint fact set and a concrete
taint report as outputs. Similarly, if the input taint fact is symbolic, the analysis yields a
symbolic taint fact set and a symbolic taint report. See Section 5.3 for more details.

14

Step 2: line 8 calling foo with α. This statement receives set of input taint facts
{Λ}, and invokes method foo with argument α containing sensitive information.
The analysis first computes the set of input taint facts for foo as {〈w,α〉, Λ},
and then looks up the summary of foo for each input taint fact. The lookup for
〈w,α〉 is generalized by substituting the concrete taint source α with symbolic
taint source ?. This lookup fails since foo has never been analyzed before, and
so the analysis descends into foo.

Step 3-1: analyzing foo with 〈w, ?〉. Due to the leak at line 2, the analysis adds
the symbolic report entry (2, ?) to the report. A new taint fact 〈ret, ?〉 will
be generated at line 4, since the method returns the information contained in
variable w. Taint source γ is ignored since propagating γ to the return variable
is an input-independent behavior, whereas the analysis is currently handling
an input-dependent behavior of foo. Such input-independent behaviors will be
handled while analyzing the same method with the sentinel input. The analysis
concludes that foo generates the set of taint facts {〈w, ?〉, 〈ret, ?〉} given the
set of taint facts 〈w, ?〉. The set of taint facts and the report returned to the
callsite is therefore {〈ret, ?〉} and {(2, ?)} The following mapping is also added
to the summary: [(foo, 〈w, ?〉) 7→ ({〈ret, ?〉}, {(2, ?)})].

Step 3-2: analyzing foo with Λ. This time, the analysis is covering the input-
independent behavior of the method. First, the analysis generates a new taint
fact 〈ret, γ〉 at line 4, and then the concrete report entry (3, γ) at line 3. At the
end, the set of taint facts {〈ret, γ〉,Λ} and the report {(3, γ)} are returned to the
callsite. The summary is updated with new entry (foo,Λ) 7→ ({〈ret, γ〉,Λ}, ∅).
As the report contains only a concrete entry, the analysis doesn’t add the report
to the summary.

Step 4: line 8, returning from foo. The analysis first instantiates the foo

summary with different input taints, replacing ret with the actual variable x
and ? with the actual taint source α. Next, the analysis merges the results of
that instantiation with the input taint fact at the callsite, yielding taint facts
{〈x, α〉, 〈x, γ〉, Λ}. By instantiating the effect part of the summary, the analysis
detects that taint source α leaks to SINK at line 2, and adds the correspond-
ing concrete report entry (2, α) to the report. Note that report entry (3, γ) is
already reported while analyzing method foo.

Step 5: line 9. This statement receives input taint set {〈x, α〉, 〈x, γ〉, Λ},
and invokes foo method with new argument β. Our analysis looks up the
summary of foo for input taints (〈w, β〉 and Λ) and resolves inputs using the
summary: Λ is trivially resolved, as it was observed before, while 〈w, β〉 is
resolved by first generalizing it to 〈w, ?〉 and then by looking up the summary.
The analysis instantiates the lookup results, projects them to the callsite, and
then merges them with the incoming taint set and report, yielding taint facts
{〈x, α〉, 〈x, γ〉, 〈y, β〉, 〈y, γ〉, Λ} and report {(2, α), (2, β), (3, γ)}.

15

5.3. Soundness of Symbolic Summarization

In this section, we prove that the symbolic summarization based analysis and
the baseline analysis compute the same set of reports. As a first step to prove
this property, we begin with defining well-formed summaries, sound summaries,
covering reports, concrete (abstract) taint fact sets, and concrete (abstract) taint
reports.

Definition 1 (Well-formed Summary). Summary S is well-formed if and only
if the following holds:

∀m ∈MID . S(m,Λ) 6= ⊥ =⇒ S(m,Λ) = (, ∅)
∀m ∈MID, 〈`, α〉 ∈ TaintFact . α 6= ? =⇒ S(m, 〈`, α〉) = ⊥

Definition 2 (Sound Summary). Summary S is sound if and only if it is well-
formed and the following is true:

∀m ∈MID . S(m,Λ) = (T, ∅) =⇒ ∃R.{Λ} ` sm → (T,R)
∀m ∈MID, t ∈ TaintFact . t 6= Λ ∧ S(m, t) = (T,R) =⇒ {t} ` sm → (T,R)

where sm indicates the body statement of method m. Note that we are defining
the soundness of the summary with respect to the abstract semantics of the
baseline analysis. This is essential to the soundness proof.

Definition 3 (Covering Report). Let S be a sound summary. Taint report R
covers S if and only if the following is true:

∀m ∈MID . (S(m,Λ) = (T, ∅) ∧ {Λ} ` sm → T,R′) =⇒ R′ ⊆ R.

Again, note that we are defining the property with respect to the abstract
semantics of the baseline analysis. Also note that the definition only considers
the defined entries of the summary. Because of this, the empty report covers
the empty summary.

Definition 4 (Concrete Taint Fact Sets and Concrete Reports). We say that a
set of taint facts is concrete if it is either the sentinel (Λ) or a taint fact with a
concrete taint source (such as α). A taint fact containing a symbolic taint source
(?) is symbolic. We say that a set of taint facts is concrete (resp. symbolic) if
and only if all the elements are concrete (resp. symbolic). We say that a taint
report is concrete (resp. symbolic) if all the entries of the report are composed
of a concrete (resp. symbolic) taint sources.

The second step of the soundness proof is to establish that the analysis
using a concrete input and the analysis using the corresponding symbolic input
followed by an additional instantiation step yield the identical result:

Lemma 1 (Baseline Instantiation). Let ` and `′ be abstract locations, α be a
taint source, T1 and T2 be sets of taint facts, R1 and R2 be taint reports, and s
be a statement. Assume {〈`, ?〉} ` s→ T1, R1 and {〈`, α〉} ` s→ T2, R2. Then,
the following is true:

T2 = {〈`′, α〉 | 〈`′, ?〉 ∈ T1} ∧ R2 = {(l, α) | (l, ?) ∈ R1}

16

Proof. Proof by the induction on the height of the derivation of the baseline
analysis.

The soundness of the symbolic summarization based analysis follows from
the following proposition and the soundness of the baseline analysis. The propo-
sition aims to show two properties: First, the baseline analysis and the sym-
bolic summarization based analysis compute equivalent results. Second, the
concreteness of the output taint fact set and the output report depend on the
concreteness of the input taint fact set. In other words, the analysis preserves
concreteness.

Proposition 2. Let S be a sound summary, R be a concrete report covering S,
s be a statement, and T , T1 and T2 be sets of taint facts. Assume T is either
concrete or symbolic, S, T ` s → S1, T1, R1, and T ` s → T2, R2. Then, the
following is true:

T1 = T2 ∧ R1 ∪R = R2 ∧ S1 is sound ∧ R1 ∪R covers S1

∧ (T is concrete =⇒ T1 and R1 are concrete)
∧ (T is symbolic =⇒ T1 and R1 are symbolic)

Proof. Proof by the induction on the height of the derivation of the symbolic
summarization based analysis.

• [Invoke] case: We begin by applying the distributivity of the baseline
abstract transformer. The case boils down to showing that for every ti
in T , the summary lookup S, ti `∗ m : sm → S1, T1, R1 and the baseline
semantics {ti} ` sm → T2, R2 computes the same result (T1 = T2, R ∪
R1 = R2, S1 is sound, and R∪R1 covers S1), and as well as the additional
property (if ti is concrete, then T1 and R1 are concrete). The definition of
summary lookup requires us to perform a case analysis on the summary
lookup rules:

– The hit cases follow from the soundness of the summary and the
induction hypothesis.

– The miss cases follow from Lemma 1 and the induction hypothesis.
Here, the proof uses the fact that the analysis preserves the con-
creteness to show the equivalence of the results. For example, in the
[MissΛ] case, the induction hypothesis and the concreteness of the
input taint fact implies the concreteness of the output taint report
R. Therefore, directly returning the report without putting it into
the summary is sufficient to show that the resulting summary S′′ is
sound, and the resulting report R covers S′′. The exact opposite hap-
pens in the [Miss?] case — The induction hypothesis and the fact
that input taint fact is symbolic implies that the output taint report
R is also symbolic. Hence, directly putting it into the summary with-
out returning it is sufficient to show that the resulting summary S′′

is sound and the resulting report Rinst covers S′′.

17

• Other cases can be easily proved using the soundness of the summary and
induction hypothesis.

Corollary 3 (Soundness Preserving). The symbolic summarization based anal-
ysis is sound w.r.t. the baseline analysis. I.e., if {Λ} ` s → T1, R1, and
[], {Λ} ` s→ S′, T2, R2, then R1 = R2.

Proof. Let R be a taint report covering the empty summary. By definition,
the empty summary is a sound summary. Hence, we can apply Proposition 2,
which yields R ∪R2 = R1. Therefore, we can replace R with the empty report,
which yields R2 = R1. In other words, the summarization based analysis and
the baseline analysis always compute the same taint report.

6. State Pruning

The taint analysis described in the previous section propagates abstract
states (taint facts, in our case) over the control flow edges. However, the propa-
gation is not cognizant of whether the propagated abstract state is used by the
target program point. Indeed, several recent works [15, 19, 23, 29] report that
pruning the abstract state by forgetting irrelevant facts can provide significant
performance improvement.

STAR employs three state-pruning techniques: escape-based pruning, access-
based localization, and bypassing. Although the ideas of state-pruning tech-
niques are not new, the potential of using these technique has been overlooked
in the previously reported IFDS-style taint analyzers [3, 42]. Yet, we find that
state-pruning can play an important role in scaling an IFDS-style taint analysis.
While implementing escape-based pruning, we also found a simple escape anal-
ysis that works effectively and efficiently for our problem. In this section, we
explain the basics of each state-pruning technique using the example in Fig. 6.
We also explain how each technique can be seamlessly integrated into the IFDS-
style taint analysis.

6.1. Escape-Based Pruning
When handling a function call, the return state can be pruned with respect

to abstract objects that are not accessible to the caller. An over-approximation
of object lifetime [25, 40, 6, 35] can be used to filter the returned abstract state.
An instance of this idea is to use an escape analysis [6, 7, 44] to infer whether
an object escapes its creation scope.

Consider class O and class A of the example in Fig. 6. Assume that there is
an entry point method that creates an instance of A and invokes method bar.
In this scenario, variable x contains the object created at line 9, whose field f ,
g, and h are tainted. Then, the content of field f of the object in variable x is
returned. A näıve analyzer would conclude that taint facts 〈ox.f, α〉, 〈ox.g, β〉,
〈ox.h, γ〉, and 〈ret, α〉 should be returned to the callsite. However, the object
in x is local to method foo. Hence, it is sufficient to return 〈ret, α〉, and taint
facts about the object need not be returned to the caller bar.

18

1 class O {

2 int f=α;
3 int g=β;
4 int h=γ;
5 }

6
7 class A {

8 int foo() {

9 O x = new O();

10 return x.f;

11 }

12
13 void bar() {

14 print(foo ());

15 }

16 }

19 class B {

20 void zoo(O x) {

21 print(x.f);

22 }

23
24 void koo(O y) {

25 zoo(y);

26 }

27
28 void car() {

29 O z = new O();

30 print(z.g);

31 print(z.h);

32 koo(z);

33 }

34 }

Figure 6: Example Java program. We assume that there is entry method main that creates
an instance of A and B, and then invokes methods bar and car.

Abstract semantics. This optimization affects the [MissΛ] rule and the [Miss?]
rule for handling the returns from a method call. We assume a pre-analysis,
which computes ¬escape(m) (⊆ L̂oc) a sound over-approximation of the set
of abstract objects that do not escape method m. The analysis uses the non-
escaping information to filter the analysis result of the method body as follows:

[MissΛ]

S(m,Λ) = ⊥ S, {Λ} ` s→ S
′, T ′, R

Tret = (T ′|−
Var\{ret})|

−
¬escape(m)

S
′′ = S

′ t [(m,Λ) 7→ (Tret, ∅)]

S,Λ `∗ m : s→ S
′′, Tret, R

The [Miss?] rule is modified similarly.

Escape analysis in STAR. STAR performs simple reasoning to determine if an
abstract object is local to a method or not. To escape the allocation site, an
object needs to be returned, passed to another method as an argument, assigned
to an object field, or assigned to a static field of a class; all of these operations
create an alias. If an abstract object has only one access-path pointing to it,
which can be easily determined by querying an underlying points-to oracle, we
can conclude that the abstract object cannot escape its allocation site. Although
the approach seems to be simplistic, we found it to be extremely effective at
detecting taint facts about temporary local objects, especially string values and
StringBuilder objects. Section 7.3 provides more explanation regarding the
effectiveness of this simple escape analysis.

The necessity of escape-based pruning. A reader familiar with an access-path
based taint analysis (e.g., FlowDroid [3]) may think that method local states can
be detected without using an escape analysis. That is true when the analysis
is using a purely access-path based memory model; in such a case, any taint
facts about method local access-paths can be easily identified and removed by

19

simply checking root variables of access-paths. However, if an analysis uses
abstract objects to reason about object fields, like STAR, the analysis needs
a separate mechanism to determine and remove method local objects because
this information is not available in the abstract objects themselves. We also
emphasize that other two state-pruning techniques are orthogonal to the choice
of memory model.

6.2. Access Based Localization

Given an over-approximation of the abstract program state that is accessed
by a method, one can partition the abstract state at the callsite. One partition
concerns the abstract program state that may be accessed by the callee and the
rest concerns program state irrelevant to the callee. It is sufficient to analyze the
callee using the former and then obtain the post-state by joining with the later.
This idea is known as framing [30]. STAR uses access-based localization [28],
an instance of framing, which uses context-insensitive mod-ref analysis as a pre-
analysis to over-approximate the abstract state that might be accessed by each
callee (and its transitive callees).

Consider class O and class B of the example in Fig. 6. Assume that there is
an entry point method which creates an instance of B and invokes method car.
In the example, field f , g, and h are tainted by the constructor of O. Hence,
the analysis will generate taint facts 〈oz.f, α〉, 〈oz.g, β〉, and 〈oz.h, γ〉 at line 29,
where oz denotes the abstract object created at line 29. Among these, only the
taint fact about field f is necessary to analyze method koo since it is accessed
by koo and its transitive callee zoo.

Abstract semantics. The optimization affects the [Invoke] rule. We use access(m)
(⊆ L̂oc), a sound over-approximation of the access set of method m, to filter
the input taint fact set passed to the callee:

[Invoke]

callee(l) = (m,xm, sm)

Tin = ((T [z/xm])|−
Var\{xm}

)|access(m) ∀ti ∈ Tin.S, ti `∗ m : sm → Si, Ti, Ri

Tout = ∪Ti T ′ = T |−{x} ∪ Tout[ret/x] S
′ = tSi R′ = ∪Ri

S, T ` l : x = y.f(z)→ S
′, T ′, R′

6.3. Bypassing

We rely on a bypassing technique [27] to reduce the size of abstract states
propagated intra-procedurally. Bypassing is based on the observation that meth-
ods typically only access a small portion of the abstract program state, and that
the rest is accessed by its transitive callees only. Therefore, the analysis can
partition an abstract state at method entry into local state, which may be ac-
cessed by the method directly, and non-local state, which is accessed only by its
callees. The local state is propagated through the control flow graph, whereas
the non-local state is directly forwarded to the set of callsites that are imme-
diate post-dominators of the program point, skipping the local instructions in
between.

20

Consider class O and class B of the example in Fig. 6 again. In the body
of method car, the field f of the object in variable z is never used directly
by method car. Bypassing partitions taint facts into local facts (〈oz.g, β〉 and
〈oz.h, γ〉) and non-local facts (〈oz.f, α〉), and short-circuits the non-local facts
to the next invoke instruction (line 32), skipping the local instructions (line 30
and 31) in between.

Abstract semantics. We need to modify the abstract semantics judgment to the
following form:

S, TL, TB ,m ` s→ S
′, T ′L, T

′
B , R

The new judgment takes a pair of taint fact sets as input (resp. local set TL
and bypassing set TB), and generates a pair of output taint sets (resp. output
local set T ′L and output bypassing set T ′B .) Bypassing sets will be only used and
modified by invoke statements. Also note that the judgment is augmented with
m, the method enclosing the current statement s. We explain the two rules with
interesting modifications (modifications required for other rules are trivial):

[Invoke]

callee(l) = (m,xm, sm)

Tin = ((TL ∪ TB) [z/xm])|−
(Var\{xm})

∀ti ∈ Tin.S, ti `∗ m : sm → Si, Ti, Ri
Tout = ∪Ti T ′ = T |−{x} ∪ Tout[ret/x] S

′ = tSi R′ = ∪Ri

T ′L = T ′|localAcc(m′) T ′B = T ′|−
(localAcc(m′))

S, TL, TB ,m
′ ` l : x = y.f(z)→ S

′, T ′L, T
′
B , R

′

The modified [Invoke] rule, where method dispatching occurs, first merges
incoming bypassing taint facts and local taint facts, and then passes the merged
result to the callee. After analyzing the callee, the returned taint fact set (T ′)
is split again using the method local access information (localAcc(m) ⊆ L̂oc.)

The rules handling summary lookup-failures are a counter part to the [In-
voke] rule, and they are modified accordingly:

[MissL?]

S(m, 〈`, ?〉) = ⊥ ` ∈ localAcc(m)

S, {〈`, ?〉}, {},m ` s→ S
′, TL, TB , R Tret = (TL ∪ TB) |−

Var\{ret}
Tinst = {〈`, α〉 | 〈`, ?〉 ∈ Tret}

S
′′ = S

′ t [(m, 〈`, ?〉) 7→ (Tret, R)] Rinst = {(l, α) | (l, ?) ∈ R}
S, 〈`, α〉 `∗ m : s→ S

′′, Tinst, Rinst

The [Miss?] rule is now split into two cases. The [MissL?] rule (L stands for
local) handles the case when the input taint fact is about a memory location
that is accessed by the callee. If this is the case, the symbolic version of the taint
fact will be added to the input local taint fact set, as usual. The analysis result
for the method body (s) is merged and then returned. Note that the sequence
of actions (split-then-merge) mirrors what happens in the [Index] rule (merge-
then-split). The other case (the [MissB?] rule where B stands for bypassing) is
similarly defined: if the input taint fact is not about a locally accessed memory
location, the input taint fact is added to the bypassing set.

21

 10

 100

 1000

 10000

 100000

 1e+06

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

N
u

m
b

e
r

o
f

a
p

p
s

Number of methods

Figure 7: Histogram showing the number of methods per app in the dataset.

 1

 10

 100

 1000

 10000

 100000

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

N
u

m
b

e
r

o
f

a
p

p
s

Number of sources

Figure 8: Histogram showing the number of sources per app in the dataset.

7. Evaluation

We aim to answer the following research questions through the evaluation:
(1) How does each optimization technique affect the analysis time and the mem-
ory consumption? (2) How do symbolic summarization and escape-based prun-
ing compare in their effectiveness to other optimization techniques? (3) What is
the overall performance of STAR with all optimizations in comparison to basic
IFDS-style analysis?

We focus on the problem of improving the performance of an IFDS-style
analysis. Regarding precision, we confirmed that all optimizations preserve
the result of the baseline analysis unchanged (i.e., the same set of reports are
generated). The evaluation of the precision of the baseline analysis is out of
scope of this paper.

22

7.1. Evaluation Corpus
The benchmark used for evaluation is a collection of 400, 000 Android apps,

all of which call at least one source API. Fig. 7 shows the distribution of the
number of methods per app, which we use as a metric to measure the size
of apps (other metrics such as number of instructions/classes show a similar
distribution). While counting the methods, we first constructed a call-graph and
ignored methods that are not reachable from one of entry-point methods. Entry-
point methods will be explained in Section 7.2. The largest app in our dataset
has over 200, 000 methods. 25% of apps have fewer than 10, 000 methods, and
50% of apps have fewer than 25, 000 methods.

7.2. Implementation
We implemented STAR on top of our Android/Java static analysis frame-

work implemented in C++. The frontend accepts Dex/Java bytecode allowing
the framework to work directly on APKs (the package file format for Android
apps) or JARs (the package file format for Java class files), without requiring
source code access. The framework features a rich set of infrastructure passes
(e.g., SSA9, dominance computation, type inference, escape analysis,. . .), which
simplifies developing more complicated client passes.

Sources and sinks. STAR is configured with 53 source APIs (e.g., accessing
user’s contacts or messages) and 37 sink APIs (e.g., write to network). Note
that each source API may be invoked multiple times in an app. Fig. 8 shows the
distribution of the number of source instructions (instructions invoking source
APIs) per app. The number of source instructions easily runs into the hundreds
and sometimes into the thousands. Since STAR is a forward analysis that begins
taint tracking at the source API invocations, the number of such invocations is
a key determinant of the performance.

Choice of oracles. STAR uses VTA [39] for call-graph construction, and a field-
sensitive context-sensitive extension of Steensgaard’s algorithm [38] for points-to
analysis. Using a different algorithm (e.g., Andersen’s algorithm [2]) could affect
the absolute analysis time, and it is an open question how that will change the
effectiveness of the optimization techniques.

Library modeling and tainted objects. We use hand-written models for frequently
used library methods. All other library methods are analyzed with a simple
heuristic — the return value is considered tainted if any input parameter is
tainted. If there is no return value, the receiver object is considered tainted.
The implemented analysis handles tainted objects by considering any access to
a field from a tainted object, as well as the return value of any method call on
a tainted receiver object, as tainted. This modeling heuristic is not sound and
can be improved on in the future.

9 A reader may wonder why state-pruning techniques are necessary when SSA is avail-
able. Please note that variable level SSA is not enough to enable sparse-analysis for heap
manipulating programs.

23

Entry point. STAR uses a synthesized main method that invokes a pre-defined
list of entry point methods non-deterministically. The list includes lifecycle
methods 10 (e.g., Activity.onCreate), callback methods receiving intents 11 (e.g.,
Activity.onActivityResult), GUI event callbacks 12 (e.g., V iew.onClick), and
static class initializers. This is not sound since it does not capture dependencies
between arguments to these handlers. Due to the heavy use of reflection in
Android and the wide variety of APIs, enumerating all entry points soundly is
an open research problem.

(a) Escape-based pruning. (b) Access-based localization.

(c) Bypassing. (d) Symbolic summarization.

Figure 9: Effect of optimizations on taint analysis running time. The budget was 4 hours
and 10GB of memory per app. Each point represents a group of apps. The color represents
the size of the group. The x-axis (resp. y-axis) measures the runtime when the corresponding
optimization is disabled (resp. all optimizations are enabled).

7.3. Experiments

To understand the effectiveness of various optimizations (including symbolic
summarization) we measured the execution time and the memory consumption
of the analysis over the benchmark. We analyzed each app with a 4 hour time
and 10GB memory budget. The experiment was performed using our internal
computation cloud. We omit details because the company does not allow dis-
closure of the specifications of the internal infrastructure. We measured the

10https://developer.android.com/guide/components/activities/activity-lifecycle.html
11https://developer.android.com/guide/components/intents-filters.html
12https://developer.android.com/guide/topics/ui/ui-events.html

24

(a) Escape-based pruning. (b) Access-based localization.

(c) Bypassing. (d) Symbolic summarization.

Figure 10: Effect of optimizations on analysis peak memory consumption. The budget was 4
hours and 10GB of memory per app. Each point represents a group of apps. The color repre-
sents the size of the group. The x-axis (resp. y-axis) measures the peak memory consumption
when the corresponding optimization is disabled (resp. all optimizations are enabled).

(a) Runtime. (b) Memory consumption.

Figure 11: Effect of the full set of optimizations on analysis running time and memory con-
sumption.

effectiveness of each optimization by disabling it, whilst enabling all other opti-
mizations. Fig. 9 (resp. Fig. 10) show the runtime (resp. memory consumption)
results. We also measured the effectiveness of STAR by comparing it against
the näıve IFDS-version of the analysis (c.f., Fig. 11). To increase the precision of
reported results, we report only the execution time of the main taint analyzer.
We found that the execution time of the pre-analysis passes is negligible and on
average is less than 2% of the taint analysis execution time. We also observed

25

that the choice of optimization techniques does not have a notable impact on
the running time of the pre-analyses.

7.3.1. Running Time

Fig. 9 and Fig. 11(a) show the analysis runtime results. Each subfigure is
composed of three parts: (a) a scatter-plot of running time, (b) a table summa-
rizing the distribution of the improvement (top-left), and (c) a box showing the
difference in the timeout rate (bottom-right). Each point in the scatter plots
represents a group of apps, where the x-coordinate (resp. y-coordinate) is the
running time of the analysis without the optimization being evaluated (resp. the
fully optimized analysis). Both axes are log-scaled, and the color represents the
size of the group. In Fig. 11(a), the x-coordinate is the running time of the
vanilla IFDS-based analysis. In each improvement distribution table, the im-
provement is defined as x/y (higher is better). Each table contains two data
columns. The left column shows the distribution for relatively simple apps (the
running time is ≤ 10 sec.), and the right column shows the distribution for
relatively complicated apps (the running time is > 10 sec.). The runtimes of
simpler (≤ 10 sec.) apps are noisier and less interesting, so we believe that the
right column is more indicative of the value of evaluated analyses in practice.
Finally, the box in the lower right corner shows the timeout rate without the
optimization (left to the arrow), with the optimization (right to the arrows),
and the amount of the change (in the parenthesis). The lower timeout rate is
the better. Note that the timeout rates capture the information not presented
in scatter plots and tables — plots and tables only show the information on apps
analyzed within the time budget. Also note that a reduction in the timeout rate
by 1% (i.e, 0.01) corresponds to 4, 000 more apps analyzable within the budget.

We now discuss the effects of optimizations:

• Escape-based pruning (Fig. 9(a)) is the most effective optimization tech-
nique in the combination, and the speedup tends to grow as the complex-
ity increases. Also, the technique provides 7% reduction in the timeout
rate. Such significant improvement is possible because of string values.
Strings play a major role in Android taint tracking, and the way Java han-
dles strings introduces large number of temporary objects. For instance,
each string concatenation operation using the + operator introduces two
new objects: a temporary StringBuilder type object and the resulting
string object. If a string is gradually constructed across multiple expres-
sions, such a construction will introduce a large number of method-local
objects (all temporary StringBuilder objects and intermediate strings
constructed during the construction process). We found that a signifi-
cant portion of the taint facts generated by the baseline taint analysis are
about such temporary StringBuilders and strings, and the escape-based
pruning can effectively remove them.

• Symbolic summarization (Fig. 9(d)) also offers significant performance
improvements. The effectiveness of symbolic summarization can vary de-
pending on the number of source instructions in a target program. A larger

26

app is more likely to use more such instructions. Thus, the technique will
be increasingly effective when target apps become more complex, as indi-
cated by results and 4% reduction in the timeout rate. We also analyzed
a set of 30 apps and verified that the speedup provided by the symbolic
summarization technique was positively correlated to the number of active
sources. Overall, the results show that symbolic summarization technique
provides significant speedups, comparable to escape-based pruning. Most
importantly, the speedup is additive, i.e., symbolic summarization can be
synergistically combined with other optimization techniques.

• Access-based localization (Fig. 9(b)) and bypassing (Fig. 9(c)) show simi-
lar pattern on the complicated apps — the ratio of improvement seems to
be limited by a constant factor. Also, neither of those two techniques is
very effective at significantly reducing timeouts (1% and 2% each). Over-
all, bypassing seems to be somewhat more effective of the two.

• The fully-optimized analysis runs orders of magnitude faster than the
vanilla implementation (Fig. 11(a)). The distribution shows that, for com-
plicated applications, more than 81.8% of apps (between −1σ and 2σ) get
an order of magnitude speedup, and the right tail (above 2σ) enjoys two
orders of magnitude of speedup. Some extreme apps even get 3-4 orders of
magnitude of speedup. The reduction of the timeout rate is also significant
(21%).

7.3.2. Memory Consumption

Fig. 10 and Fig. 11(b) show the analysis memory consumption results. The
plots are similar to the runtime plots, except that x-coordinates and y-coordinates
indicate the peak memory consumption, instead of the analysis runtime. In ta-
bles, the left data column shows the distribution for relatively small-footprint
apps (the memory consumption is ≤ 100 MB), and the right column shows
the distribution for relatively large-footprint apps (the memory consumption is
> 100 MB.). We now discuss the effects of optimizations:

• Access-based localization (Fig. 10(b)), escape-based pruning (Fig. 10(a)),
and symbolic summarization (Fig. 10(d)) all reduce the memory consump-
tion. All three are showing similar improvement distributions and similar
patterns — they become more effective as the peak memory consumption
increases.

• Bypassing (Fig. 10(c)) has a mixed impact on the memory consumption.
It increases the memory consumption of half of the apps, and it reduces the
memory consumption of the other half. When the memory consumption
is an important constraint, the bypassing technique should be used in
combination with other optimizations in order to cancel out the negative
effect of the technique. There are two reasons why bypassing does not
decrease the memory consumption significantly, and can even increase it
occasionally.

– Bypassing itself does not save a lot of memory as it only decreases
the size of taint fact sets reaching non-invoke instructions. The size

27

of taint fact sets reaching invoke-instructions and the size of method-
summaries remain unchanged, although the amount of computation
required to compute them is decreased. Overall, the memory saving
is proportional to the number of non-invoke instructions and the
number of non-local taint-facts reaching each method.

– Bypassing has an additional bookkeeping overhead as it needs to
know the immediate post-dominating invoke instruction for each in-
struction. The cost is proportional to the number of instructions
(including invokes) in each method.

The combination of these two factors determines whether the memory
consumption will increase or decrease. The results suggest that the ben-
efit and the cost cancel out each other most of the time, and the overall
memory consumption does not change significantly. However, if an app
has several methods containing a large number of invoke-instructions, the
cost can exceed the benefit.

• The fully-optimized analysis (Fig. 11(b)) reduces memory consumption for
most applications. For half of the apps (below the median), it provides a
moderate improvements (1.28x–4.86x). Above the median, it provides a
significant improvement (4.86x–32.64x).

• One interesting observation is that the memory consumption never exceeds
the 10GB budget. This is due to the fact that STAR implementation
aggressively uses hash-consing [31, 1] to reduce memory consumption.

8. Related Work

8.1. Flow-Sensitive Summary Based Analysis

IFDS. IFDS [34] and IDE [36] frameworks are well-known instances of applying
summarization to flow-and-context-sensitive program analysis. IFDS has been
applied to type-state analysis [12], error diagnosis [24], and taint analysis [41,
37, 3]. In Section 2, we discussed the differences between STAR and IFDS/IDE
in detail.

FlowTwist [17, 18] is an IFDS based Android/Java taint analyzer. FlowTwist
implements two important optimization techniques; one is comparable to our
symbolic summarization and another is orthogonal.

• FlowTwist uses symbolic reasoning [17] to resolve the redundancies caused
by tracking multiple taint sources. The main difference is in the way
FlowTwist determines actual taint sources that reach sinks: FlowTwist
tracks causal relationship between taint facts while propagating them and
uses this information to backtrack the taint sources reaching each sink in-
struction at the end. In contrast, our technique computes summaries with
effects, which help the analysis to determine reaching taint sources with-
out performing back-tracking. The information computed by FlowTwist
is richer in the sense that it can be used to backtrack arbitrary taint facts
at arbitrary program points, at the cost of more bookkeeping.

28

• FlowTwist uses access-path-abstraction [18] that allows grouping a set of
access-paths and using a single taint fact for the entire group. This is use-
ful to handle identity transfer functions. Without access-path-abstraction,
the transfer function for an instruction needs to have the identity propa-
gation entry for each access-path that is not affected by the instruction.
With access-path-abstraction, the transfer function for such an instruc-
tion can be represented succinctly by having one identity propagation per
group. Note that this is orthogonal to the symbolic summarization used in
STAR: our technique symbolically handles sets of taint sources, whereas
access-path-abstraction symbolically handles sets of access-paths. Hence,
one should be able to combine both techniques.

Naeem and Lhotak [26] proposed extensions to IFDS mainly focused on im-
proving efficiency. One novel improvement was to generate inter-procedural
supergraph edges on demand. Rapoport et al. [33] proposed a technique to sup-
press infeasible paths in the context of object-oriented programs by recognizing
correlated methods calls. This work considers two method calls as correlated if
they are known to have the same receiver object. It relies on identifying such
calls to improve precision by ignoring infeasible information flow. Both ideas
[26, 33] can be combined with STAR.

Memory analysis. Summarization has been applied to flow-and-context sensi-
tive memory-analysis problems [8, 32, 43, 9, 13]. Those analyses do not satisfy
the requirements of the IFDS framework, and each of them proposes their own
summarization methods, whereas summaries used by STAR are an extension
of IFDS. Padhye and Khedker [32] develop a tabulation approach suited for
non-distributive analysis, and apply to points-to analysis.

CFA2 [43] and pushdown-CFA [9, 13] apply a similar idea to control flow
analysis. Those techniques do not decompose summaries, which could limit
their scalability in practice. Dillig et al. [8] propose a summarization approach
to alias-analysis with support for strong updates. The symbolic summaries in
their work are based on a sophisticated decomposition suited for alias analysis.

Introspective pushdown-CFA [9] combines pushdown-CFA [9, 13] and ab-
stract garbage collection [25]. The key idea is to track the root-sets of reachable
abstract locations as a part of summaries. It is unclear whether the idea is
applicable to STAR without breaking distributivity of the transfer functions.

Value analysis. In the context of flow and context-sensitive value analysis, two
important studies [16, 45] have been reported recently. Lazy-propagation [16] is
a top-down analysis algorithm computing generalized-summaries, and it can be
applied to non-IFDS problems. When analyzing a function, the lazy-propagation
algorithm first analyzes the function with a purely symbolic abstract state, fig-
ures out what details of the symbolic abstract value are necessary during the
analysis, refines the input symbolic abstract value according to the observation,
and analyzes the function again. This allows the algorithm to find the right
amount of details required to analyze each function and to create generalized
summaries based on the findings. Zhang et al. [45] also proposed an analysis

29

algorithm that computes summaries containing the right amount of details. The
proposed algorithm uses a top-down analysis as the baseline, and switches to
the symbolic bottom-up analysis to compute a generalized-summary for a cer-
tain function only if the function is analyzed several times. When computing a
generalized summary, the symbolic analysis takes one of the observed abstract
states as a witness input and computes the partial symbolic summary capturing
the part of the function behavior relevant to the given witness. It is an open
research question whether STAR can benefit from these techniques. Note that
these techniques are adaptive methods that are useful when an optimal sum-
mary generalization strategy cannot be determined statically. On the contrary,
it is always better to use the most general summary in STAR.

8.2. Android Security Analysis

There has been a considerable amount of work on dynamic (e.g., [10]) and
static taint analysis to identify security issues in Android apps. We focus on
the latter.

One thread of work on static taint analysis has focused on on-demand alias
analysis interleaved with taint analysis. Andromeda [42] presents such a tech-
nique for scaling taint analysis for Java applications avoiding an expensive
points-to pre-analysis. FlowDroid [3] also performs interleaved points-to analy-
sis with the notion of activation contexts, which gives a precise way to manage
the handover between the two analyses. STAR relies on pre-computed points-to
analysis since it is aimed at analyzing apps with a high density of taint sources.

A second area of work has been to model the semantics of Android framework
(particularly the control flow) with greater precision. DroidSafe [14] proposes
information-flow analysis that models the Android APIs with carefully written
stubs (for component interaction as well as native methods), which allows the
analysis to handle callbacks. Apposcopy [11] implements high-level malware de-
tection rules over an inter-component call-graph. IccTA [20] identifies privacy
leaks across multiple Android components by relying on a suite of analyses to
resolve inter-component communication. The techniques in STAR are orthogo-
nal to those in DroidSafe, Apposcopy, and IccTA since our focus is on improving
performance of the fixed point computation. Our techniques can be applied over
the control flow graph inferred by those techniques.

Finally, Liang et al. [21] recently proposed a static taint analyzer for Android
apps based on Pushdown CFA and entry-point saturation. That work presents
the details of the formalism, but does not evaluate it experimentally. Thus, we
are unable to compare it to STAR.

Vitae

Wontae Choi. Wontae Choi is a software engineer at Google, Inc. He currently
focuses on analyzing Android applications using static and dynamic analysis.
Previously, Wontae worked on automated test generation, type system, and
static program analysis. He received B.S. and M.S. in Computer Science from

30

Seoul National University in 2008 and 2010. He received his Ph.D in Computer
Science from University of California, Berkeley in 2017.

Jayanthkumar Kannan. Jayanthkumar Kannan obtained his PhD from UC
Berkeley, and then worked at Google Security.

Domagoj Babic. Domagoj Babic is a manager and a tech lead at Google, Inc.
His work focuses on research and development of automated software analysis
systems. Over his career, Domagoj has published in the areas of verification,
testing, security of complex software systems, automated reasoning, grammar
inference, and applied formal methods. Before joining Google, Domagoj was
a research scientist at UC Berkeley and elsewhere in industry. He received his
Dipl.Ing. in Electrical Engineering and M.Sc. in Computer Science from the
Zagreb University in 2001 and 2003. He received his Ph.D. in Computer Science
in 2008 from the University of British Columbia.

31

[1] J. Allen. Anatomy of LISP. McGraw-Hill, Inc., 1978.

[2] L. O. Andersen. Program analysis and specialization for the C programming
language. PhD thesis, University of Cophenhagen, 1994.

[3] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel. FlowDroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for Android apps. In
Proc. of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, pages 259–269, 2014.

[4] G. Balakrishnan and T. Reps. Recency-abstraction for heap-allocated stor-
age. In Proc. of the 13th International Conference on Static Analysis,
SAS’06, pages 221–239. Springer-Verlag, 2006.

[5] T. Ball and S. K. Rajamani. Bebop: a path-sensitive interprocedural
dataflow engine. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering, pages
97–103. ACM, 2001.

[6] B. Blanchet. Escape analysis for object-oriented languages: application to
Java. In Proc. of the 14th ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, OOPSLA ’99, pages
20–34, 1999.

[7] J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and S. Midkiff. Es-
cape analysis for Java. In Proc. of the 14th ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applications,
OOPSLA ’99, pages 1–19, 1999.

[8] I. Dillig, T. Dillig, A. Aiken, and M. Sagiv. Precise and compact modular
procedure summaries for heap manipulating programs. In Proc. of the
32Nd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’11, pages 567–577, 2011.

[9] C. Earl, I. Sergey, M. Might, and D. Van Horn. Introspective pushdown
analysis of higher-order programs. In Proc. of the 17th ACM SIGPLAN In-
ternational Conference on Functional Programming, ICFP ’12, pages 177–
188, 2012.

[10] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An information-flow tracking
system for realtime privacy monitoring on smartphones. ACM Trans. Com-
put. Syst., 32(2):5:1–5:29, June 2014.

[11] Y. Feng, S. Anand, I. Dillig, and A. Aiken. Apposcopy: Semantics-based
detection of Android malware through static analysis. In Proc. of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software En-
gineering, FSE 2014, pages 576–587, 2014.

32

[12] S. J. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective
typestate verification in the presence of aliasing. ACM Transactions on
Software Engineering and Methodology (TOSEM), 17(2):9, 2008.

[13] T. Gilray, S. Lyde, M. D. Adams, M. Might, and D. Van Horn. Pushdown
control-flow analysis for free. In Proc. of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’16,
pages 691–704, 2016.

[14] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. C.
Rinard. Information flow analysis of Android applications in DroidSafe. In
Proc. of the 22nd Annual Network and Distributed System Security Sym-
posium, NDSS 2015, San Diego, California, USA, February 8–11, 2014,
2015.

[15] B. Hardekopf and C. Lin. Flow-sensitive pointer analysis for millions of lines
of code. In Proc. of the 9th Annual IEEE/ACM International Symposium
on Code Generation and Optimization, CGO ’11, pages 289–298, 2011.

[16] S. H. Jensen, A. Møller, and P. Thiemann. Interprocedural analysis with
lazy propagation. In International Static Analysis Symposium, pages 320–
339. Springer, 2010.

[17] J. Lerch, B. Hermann, E. Bodden, and M. Mezini. Flowtwist: efficient
context-sensitive inside-out taint analysis for large codebases. In Proceed-
ings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 98–108. ACM, 2014.

[18] J. Lerch, J. Späth, E. Bodden, and M. Mezini. Access-path abstraction:
scaling field-sensitive data-flow analysis with unbounded access paths (t).
In Automated Software Engineering (ASE), 2015 30th IEEE/ACM Inter-
national Conference on, pages 619–629. IEEE, 2015.

[19] L. Li, C. Cifuentes, and N. Keynes. Boosting the performance of flow-
sensitive points-to analysis using value flow. In Proc. of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Foundations
of Software Engineering, ESEC/FSE ’11, pages 343–353, 2011.

[20] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel. IccTA: Detect-
ing inter-component privacy leaks in Android apps. In Proc. of the 37th
International Conference on Software Engineering — Volume 1, ICSE ’15,
pages 280–291. IEEE Press, 2015.

[21] S. Liang, M. Might, and D. Van Horn. AnaDroid: Malware analysis of An-
droid with user-supplied predicates. Electronic Notes in Theoretical Com-
puter Science, 311:3–14, 2015.

33

[22] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In Proc. of
the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’88, pages 47–57, 1988.

[23] M. Madsen and A. Møller. Sparse dataflow analysis with pointers and
reachability. In Proc. of the 21st International Static Analysis Symposium,
SAS ’14, pages 201–218. Springer-Verlag, 2014.

[24] R. Manevich, M. Sridharan, S. Adams, M. Das, and Z. Yang. PSE: Ex-
plaining program failures via postmortem static analysis. In Proc. of the
12th ACM SIGSOFT Twelfth International Symposium on Foundations of
Software Engineering, SIGSOFT ’04/FSE-12, pages 63–72, 2004.

[25] M. Might and O. Shivers. Improving flow analyses via ΓCFA: abstract
garbage collection and counting. In Proc. of the 11th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’06, pages 13–
25, 2006.

[26] N. A. Naeem, O. Lhoták, and J. Rodriguez. Practical extensions to the
IFDS algorithm. In Proc. of the 19th International Conference on Compiler
Construction, CC ’10, pages 124–144. Springer, 2010.

[27] H. Oh and K. Yi. Access-based localization with bypassing. In Proc. of the
9th Asian Symposium on Programming Languages and Systems, APLAS
’11, pages 50–65. Springer, 2011.

[28] H. Oh, L. Brutschy, and K. Yi. Access analysis-based tight localization
of abstract memories. In Proc. of the 12th International Conference on
Verification, Model Checking, and Abstract, VMCAI ’11, pages 356–370.
Springer, 2011.

[29] H. Oh, K. Heo, W. Lee, W. Lee, D. Park, J. Kang, and K. Yi. Global
sparse analysis framework. ACM Trans. Program. Lang. Syst., 36(3):8:1–
8:44, Sept. 2014.

[30] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs
that alter data structures. In Proc. of the 15th International Workshop on
Computer Science Logic, CSL ’01, pages 1–19. Springer, 2001.

[31] C. Okasaki and A. Gill. Fast mergeable integer maps. In In ACM Workshop
on ML, pages 77–86, 1998.

[32] R. Padhye and U. P. Khedker. Interprocedural data flow analysis in soot
using value contexts. In Proc. of the 2Nd ACM SIGPLAN International
Workshop on State Of the Art in Java Program Analysis, SOAP ’13, pages
31–36, 2013.

[33] M. Rapoport, O. Lhoták, and F. Tip. Precise data flow analysis in the
presence of correlated method calls. In Proc. of the 22nd International
Symposium on Static Analysis, SAS ’15, pages 54–71. Springer, 2015.

34

[34] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow anal-
ysis via graph reachability. In Proc. of the 22nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL ’95, pages 49–
61, 1995.

[35] C. Ruggieri and T. P. Murtagh. Lifetime analysis of dynamically allocated
objects. In Proc. of the 15th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’88, pages 285–293, 1988.

[36] M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow anal-
ysis with applications to constant propagation. In Selected Papers from
the 6th International Joint Conference on Theory and Practice of Software
Development, TAPSOFT ’95, pages 131–170. Elsevier Science Publishers
B. V., 1996.

[37] M. Sridharan, S. Artzi, M. Pistoia, S. Guarnieri, O. Tripp, and R. Berg.
F4F: Taint analysis of framework-based web applications. pages 1053–1068,
2011.

[38] B. Steensgaard. Points-to analysis in almost linear time. In Proc. of the
23rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’96, pages 32–41, 1996.

[39] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam,
E. Gagnon, and C. Godin. Practical virtual method call resolution for
Java, volume 35. ACM, 2000.

[40] M. Tofte and J.-P. Talpin. Region-based memory management. Information
and computation, 132(2):109–176, 1997.

[41] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman. TAJ:
Effective taint analysis of web applications. In Proc. of the 30th ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
PLDI ’09, pages 87–97, 2009.

[42] O. Tripp, M. Pistoia, P. Cousot, R. Cousot, and S. Guarnieri. Andromeda:
Accurate and scalable security analysis of web applications. In Proc. of
the 16th International Conference on Fundamental Approaches to Software
Engineering, FASE’13, pages 210–225. Springer-Verlag, 2013.

[43] D. Vardoulakis and O. Shivers. CFA2: A context-free approach to control-
flow analysis. In Proc. of the 19th European Symposium on Programming
Languages and Systems, ESOP ’10, pages 570–589. Springer, 2010.

[44] J. Whaley and M. Rinard. Compositional pointer and escape analysis for
Java programs. In Proc. of the 14th ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications, OOPSLA
’99, pages 187–206, 1999.

35

[45] X. Zhang, R. Mangal, M. Naik, and H. Yang. Hybrid top-down and bottom-
up interprocedural analysis. In Proc. of the 35th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI ’14,
pages 249–258, 2014.

36

	Introduction
	Overview
	Preliminaries
	Taint Analysis
	IFDS Framework and RHS Algorithm

	Symbolic Summarization with Effect
	State Pruning

	Taint Analysis: The Baseline
	Model Language
	The Analysis Definition

	IFDS Formulation
	The Analysis Definition

	Symbolic Summarization
	The Analysis Definition
	Example Run of the Analysis
	Soundness of Symbolic Summarization

	State Pruning
	Escape-Based Pruning
	Access Based Localization
	Bypassing

	Evaluation
	Evaluation Corpus
	Implementation
	Experiments
	Running Time
	Memory Consumption

	Related Work
	Flow-Sensitive Summary Based Analysis
	Android Security Analysis

