
Spear Modular Arithmetic Format Specification

Version 1.0

Domagoj Babić
babic <at> cs.ubc.ca

Date: 2007/12/21 17:48:12 Revision: 1.7

1 Legal Matters

Copyright (c) 2007 Domagoj Babić. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.2 or any later version published by the Free Software Foun-
dation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts.

Essentially, this means that you can do whatever you want with this docu-
ment. However, I’d kindly ask you to consult me before you decide to change
the format in any way.

The document is provided ”as is”, without warranty of any kind, express or
implied, including but not limited to the warranties of merchantability, fitness
for a particular purpose and non-infringement. In no event shall the author be
liable for any claim, damages or other liability, whether in an action of contract,
tort or otherwise, arising from, out of or in connection with the document.

2 Introduction

This document is a specification of a simple quantifier-free modular arithmetic
input format. The format currently supports bit-vectors up to 64 bits, and all
standard bit-vector operators. As the format specified in this document is a
native input format of Spear automated theorem prover, it will be called the
Spear format (SF).

The benchmarks in this format can be bit-blasted to boolean satisfiability
instances (Spear can do that conversion for you). However, it is convenient to
have a higher-level modular arithmetic format to avoid duplication of encoding
effort and to facilitate interpretation of results. In addition, the higher level
structure available in modular arithmetic constraints can be exploited for more
efficient solving.

Spear format is designed to be:

• Compact — Benchmarks can get very large, even hundreds of megabytes,
so every byte counts. The format strives to achieve maximal compactness
without going to binary, or sacrificing readability.

1

• Trivial to parse — In my humble opinion, one of the main reasons why
the boolean satisfiability (SAT) competition1 has been so successful is
an exceptionally low-effort entry into SAT solving. The input format is
so simple that anyone can get a simple SAT solver up and running in a
day. The format presented in this document strives for the same level of
simplicity.

• Expressive — Any modular arithmetic format worth its while needs to
support multiplication, unsigned and signed division, as well as other fre-
quently used operators.

• Simple to generate — Each constraint can be seen as a small circuit with
a named output. The constraints are all in the format

output operator operand1 operand2 · · · operandn

while the predicates are in the format

operator operand1 · · · operandn

Chances are that your internal representation of the problem you want to
encode to modular arithmetic is either a set of expressions that are already
in this form, or a circuit-like graph, from which such constraints can be
trivially generated.

• Precise — Precise semantics is crucial in operator specification. Theorem
provers are useless if each produces a different answer.

• Readable — Facilitates debugging of the theorem provers.

• Suitable for random benchmark generation — Decision procedures are
very complex pieces of software that require very rigorous testing (buggy
decision procedures are useless for formal verification). Format that en-
ables simple random test-case generation makes it possible to design simple
automatic test environments, which, in my experience, are very effective
in finding bugs in decision procedures.

• Simple output format — Facilitates building of test environments, com-
petition environments (like SAT competition scripts), as well as the usage
of the results. Variables in this format are required to have unique names,
which means that it is trivial to map solutions to variables. In contrast,
the formats that allow context-dependent name overloading complicate
the usage of the results.

The limitation to 64 bits is for practical reasons. If only 64-bit types are
allowed, all constants are representable in machine integers, and all arithmetic
can be done in 128 bits, which means that theorem provers do not need big-
number libraries. This is important for several reasons:

• Efficiency — Big num libraries are often much slower than regular machine
arithmetic.

• Portability — Fewer library dependencies.
1http://www.satcompetition.org/

2

http://www.satcompetition.org/

• Simplicity — Simpler design of the theorem prover.

The SF file ending is .sf. According to my web search, that seems to be a
rarely used ending. The file itself is a regular ASCII text file. In this document,
the content of an The SF file will be always in the verbatim style.

This format specifies the queries as satisfiability queries. The query is equal
to a conjunction of all constraints and predicates in the input file. To prove
validity, invert your query and check for unsatisfiability.

3 Types

The basic type is boolean, denoted as i1 (one-bit integral type). All other types
are composed of booleans. For instance, 64-bit vector is i64.

Declarations of variables and constants are immediately coupled with their
types by using a colon as a separator. For instance:
(variable:type or constant:type).

There is no distinction between signed and unsigned bit-vectors. All arith-
metic is two’s complement arithmetic, and the operators that actually depend
on the sign, like division, will have both signed and unsigned versions.

4 Constants

Constants are represented in the form value:type, and can be used directly
as operands. value is an unsigned integer. Since all the arithmetic is in two’s
complement, the constants can be read as unsigned 64-bit integers and then
truncated to the bit-width of the given type. Unsigned values that do not fit in
the given type are allowed, but will be truncated.

5 Variables

The result of every operation has to be assigned to a variable. Every circuit can
be easily transformed into this form. Variable names must start with a lower-
or uppercase letter, and can be followed by a zero or more letters, digits, or
underscores. Other characters are disallowed. Every variable has to be declared
on the declaration line in the header before used.

Variables must have unique names for several reasons:

• Simpler and faster parsing.

• If the instance is satisfiable, unique names simplify mapping of the so-
lutions to the subexpressions of the original problem. Without unique
names, deciphering the solutions would be unnecessarily complicated.

• If the instance is converted into the CNF form, a simple map file can
be easily generated that maps modular arithmetic variables to boolean
variables.

Operator names (like extr, zext, etc.) cannot be used as variable names.

3

6 High-Level Structure

This section specifies the high-level structure of the SF files. The file has to
begin with a header, and continue with constraints and predicates.

Each header must contain a version line, which shows the version of the
format specification according to which the file was generated. The version line
starts with v, followed by a white space (one or more spaces or tabs), and ends
with two integers separated by a dot. For instance:

v 1.2

In addition to the version line, the header may contain:

• Comment line(s) — Anything starting with # is considered a comment.

• Expect line — Expected result, 0 for unsatisfiable, and 1 for satisfiable.
Starts with e, followed by a white space. Expect line can be used for
adjusting the heuristics to the expectations.

• Declaration line(s) — Declares variables used in the instance. Starts with
d, followed by a white space.

For instance, a header could look like:

Header example
v 1.0
e 0
d a:i64 b:i64 res:i64

Constraints are given in the Polish notation in the form:
output operator operand1 operand2 ... operandn,
one constraint per line. Intuitively, output can be seen as the name of the wire
that the circuit represented by the operator drives. Constraint lines have to
start with c, followed by a white space. The rest of the line contains a variable
representing the output (or a constant), the operator, and the operands in the
natural order (left-to-right). The order is fixed and each two adjacent tokens
on the line must be separated by a white space. In the following example, the
result of addition of a and b is stored into res:

c res + a b

The following constraint requires the sum of a and b to be zero:

c 0:i32 + a b

Unlike in real circuits, you can provide multiple definitions of the same vari-
able. For instance:

d a:i8 b:i8
c a + 1:i8 b
c a - 1:i8 b

4

This instance happens to be satisfiable (having two solutions: a=0,b=1 and
a=129,b=128, binary: 00000001+100000000 = 10000001, 00000001−10000000 =
00000001 + 01111111 + 000000001 = 10000001), but in general, multiple defi-
nitions of a variable can easily cause inconsistency (instance becomes unsatisfi-
able).

Finally, the predicate lines start with p, followed by a white space. The
predicate line contains a single predicate (e.g. predicate op1 op2 ... opn).
Predicates are considered to be:

• All operators presented in Sec. 7

• Operators and, xor, or, if-then-else, and not if and only if all their operands
are of boolean type.

The following example illustrates a possible use of predicate lines. The
validity of a+b = b+a can be done by checking that a+b 6= b+a is unsatisfiable:

Commutativity of addition
v 1.0
e 0
d a:i64 b:i64 c:i64 d:i64
c c + a b
c d + b a
p /= c d

Predicates produce a result of the boolean type. If the types are properly
matched, predicates can be also used as constraints. For instance, these are all
valid usages of predicates:

d res:i1
p /= a b
p /= a 384:i64
c 1:i1 /= a b
c res /= 24:i64 b

Main points:

• Every line starts with a letter followed by a white space, except for the
comments. Comments start with #, followed by anything.

• Order of lines must be: the header, and then constraints and predicates.

• Variables can have multiple definitions, but must have unique names.

7 Operators

This section specifies all supported operators. Operators that handle signed and
unsigned bit-vectors differently will be distinguished by the operator symbol.

5

7.1 Bitwise Operators

Operators presented in this section take one or two operands. If the operator
takes two operands, both operands must be of the same type. The result is
always of the same type as the operands.

Def. 1 (&) Bitwise AND. Operands: 2.

Def. 2 (|) Bitwise OR. Operands: 2.

Def. 3 (ˆ) Bitwise XOR. Operands: 2.

Def. 4 (∼) Bitwise negation (NOT). Operands: 1.

There is no distinction between logical and bitwise operators. Bitwise AND
is logical AND when its operators are of the boolean type.

7.2 Predicates

Bitwise operators in Sec. 7.1 are considered predicates if their operands are of
the boolean type. If the operands are booleans, so is the result.

The operators presented in this section always produce boolean results and
always require two operands. Both operands must be of the same type.

Most of the predicates in this section will be defined in the terms of flags set
up by subtraction of the operands of the predicate. Here we define those flags:

• (Z)ero flag — true if and only if all bits of the subtraction result are zero.

• (C)arry flag — The carry flag is true if and only if subtraction produces a
carry out of the most significant bit (also known as borrow).

• (N)egative flag — true if and only if the most significant bit of the sub-
traction result is true.

• (O)verflow flag — Overflow flag is defined as XOR of the carry bits from
the two most significant bits produced by subtraction.

Def. 5 (=>) Implication. a ⇒ b is a shorthand for ¬a ∨ b.

Def. 6 (=) Equal. Returns true (1:i1) if operands are equal, or false (0:i1)
otherwise. I.e., a = b iff a− b sets Z flag.

Def. 7 (/ =) Not equal. Returns true if at least one bit of the first operand
does not match the corresponding bit of the second operand, false otherwise.
I.e., a/ = b iff a− b does not set Z flag.

Def. 8 (ule) Unsigned less or equal. a ule b is true iff a − b sets flags so that
¬C ∨ Z is true.

Def. 9 (uge) Unsigned greater or equal. a uge b is true iff a − b sets flags so
that C is true.

Def. 10 (ult) Unsigned less than. a ult b is true iff a− b sets flags so that ¬C
is true.

6

Def. 11 (ugt) Unsigned greater than. a ugt b is true iff a− b sets flags so that
C ∧ ¬Z is true.

Def. 12 (sle) Signed less or equal. a sle b is true iff a − b sets flags so that
Z ∨ (NˆV) is true, where ˆ is XOR.

Def. 13 (sge) Signed greater or equal. a sge b is true iff a− b sets flags so that
N = V is true, where = is equality.

Def. 14 (slt) Signed less than. a slt b is true iff a − b sets flags so that NˆV
is true.

Def. 15 (sgt) Signed greater than. a sgt b is true iff a − b sets flags so that
¬Z ∧ (N = V) is true.

7.3 If-then-else operator

Def. 16 (ite) If-then-else. Operands: 3. If the first operand is true, returns the
second operand, otherwise returns the third operand. First operand must be of
type i1. The other two operands must be of an equal type. The returned result
is of the type of the last two operands.

7.4 Arithmetic Operators

Operators in this section take two operands. Both operands must be of the
same type. The result is of the same type as the operands.

For precise definition of division and remainder in this section we need to
introduce ceiling and floor operators. These operators are not supported by the
SF, and serve only as helper definitions:

• Ceiling — dae, rounds a real number a to the nearest integer by rounding
towards +∞ if a is positive, or towards −∞ if a is negative.

• Floor — bac, rounds a real number a to the nearest integer by rounding
towards zero.

In addition to ceiling and floor, we also need to introduce a special helper
operator for division of reals. Real division operator will be denoted as ÷. If
operands of ÷ are integers, it will be assumed that they are casted to reals
before the division is performed.

Def. 17 (+) Standard two’s complement addition.

Def. 18 (−) Standard two’s complement subtraction, a− b = a + (∼ b) + 1.

Note that - cannot be used as two’s complement. To compute a two’s
complement of a variable a, use 0 - a.

Def. 19 (∗) Standard two’s complement multiplication.

Def. 20 (/u) Unsigned division. a /u b is defined as ba ÷ bc if b 6= 0. For
b = 0, the result is undefined.

7

sign of a sign of b sign of q
- - +
- + -
+ - -
+ + +

Table 1: Sign table for signed division.

Def. 21 (/s) Signed division. The operator is formally defined as:

a /s b =
{

ba÷ bc if b 6= 0 ∧ a ∗ b ≥ 0
da÷ be if b 6= 0 ∧ a ∗ b < 0

The most significant bit of the quotient q is given in Table 1. For b = 0, the
result is undefined.

Def. 22 (%u) Unsigned remainder. a %u b is defined as a− (a /u b) ∗ b. For
b = 0, the result is undefined.

Def. 23 (%s) Signed remainder. a %s b is defined as a − (a /s b) ∗ b. The
most significant bit (sign) of the result is equal to the most significant bit of a.
For b = 0, the result is undefined.

If division (resp. remainder) by zero happens while the instance is being
solved, the result is undefined. This is the only allowed source of possible
mismatches of the satisfiability results produced by different theorem provers.

Since all operators require either variables or constants as operands, it is easy
to detect runtime division or remainder by zero. Automatic solution checkers
should disregard such solutions (and not flag them as incorrect).

7.5 Shift Operators

Operators in this section take two operands. The first operand can be of an
arbitrary integral type, while the second must be of i8 type. The return type
is always of the same type as the first operand.

Def. 24 (<<) Left shift. If the second operand is larger than the bit-width of
the first operand, the result is zero.

Def. 25 (>> a) Arithmetic shift right. The most significant bit of the first
operand is shifted in from the left. If the second operand is larger than the bit-
width of the first operand, the result is zero if the most significant bit of the first
operand is zero, or a bit-vector of ones otherwise.

Def. 26 (>> l) Logical shift right. Zero is shifted in from the left. If the second
operand is larger than the bit-width of the first operand, the result is zero.

7.6 Cast Operators

This section specifies supported casting operators.

8

Def. 27 (trun) Truncation. Operands: 1. Operand is truncated to the bit-width
of the result, keeping the least significant bits. The bit-width of the operand must
be strictly larger than the bit-width of the result. For instance:

d a:i32 b:i1 c:i2
c b trun a
c c trun 43:i32

The first constraint says that b is equal to the least significant bit of a, while the
second says that c is equal to 3:i2.

Def. 28 (sext) Sign extend. Operands: 1. Sign extends the operand to the bit-
width of the result. The bit-width of the operand must be strictly smaller than
the bit-width of the result.

Def. 29 (zext) Zero extend. Operands: 1. Zero extends the operand to the bit-
width of the result. The bit-width of the operand must be strictly smaller than
the bit-width of the result.

Def. 30 (conc) Concatenate. Operands: 2. Given two operands of types ix
and iy, returns result of type i(x+y), such that the bits of the second operand
are copied into the least significant part of the result, and the bits of the first
operand are put into the remaining places.

For instance, concatenation of 1:i8 and 0:i8 would produce 256:i16. Sim-
ilarly, 0110 concatenated with 1001 produces 01101001.

Def. 31 (extr) Extract. Operands: 3. First operand is a variable (resp. con-
stant) as specified in Sec. 5 (resp. 4). The other two operands are constants 0–64
of type i8. Zero represents the least significant bit. The operator extracts bits
in range from the second operand (inclusive) to the third operand (exclusive).
The second operand must be always strictly smaller than the third operand.

If the first operand is x, the second n, and the third m, the operator extracts
bits [n–m) from x. The result is of type i(m-n).

For instance, extr 22:i8 0:i8 3:i8 returns 6:i3, while
extr 22:i8 3:i8 4:i8 returns 0:i1.

8 Output Format

The expected output is very similar to the SAT competition output format.
Every output that a theorem prover produces should start either with c, s,

or v, followed by a white space. The letter c stands for a comment, while the
letter s stands for solution. Solution must be: SATISFIABLE, UNSATISFIABLE,
or UNKNOWN. The last one is used if the theorem prover detected internal incon-
sistency, unexpected behaviour, or timed out. The satisfying assignment must
be printed on a line starting with v in the form variable=value, where the
value is an unsigned integer. Solutions on the v-line have to be separated by
one or more white spaces. Two examples of the valid output:

c Speedy Gonzo Theorem Prover, v 0.0001
c
c <get your coffee, this is going to take some time...>

9

c
c TIMEOUT
s UNKNOWN

c Speedy Gonzo Theorem Prover, v 0.0001
c
c
s SATISFIABLE
v a=1 b=2 c=3

Given a variable of type ik, the solution must fit into k bits.

9 Notes on Efficiency

This section provides several suggestions how to make your instances more com-
pact and easier for the theorem provers to prove:

• Simplify expressions — Simplify expressions as much as possible before
encoding them into the SF. I suggest using the following simple heuristic:
Try to minimize the total number of bits required for representing all the
variables.

• Slice your query — Before you pass the query to a theorem prover, remove
all redundant expressions. This can make a drastic difference in both the
size of the instance and the time required to solve it.

• Experiment with the encoding order — Changing the order of your con-
straints in the instance can make 10–20X difference in the runtimes. Try
encoding your internal representation both forward and backward, and see
what works better for you.

• Propagate constants — Theorem provers are usually extremely efficient
at propagating constants, so constant propagation will not have much
impact on the solving runtimes, but will make the instances smaller. This
technique is especially effective if you have a large number of relatively
simple queries. Although the speedup on each individual query is not
likely to be large, when you have thousands of queries, the savings become
much more significant.

• Encode constants immediately as operands — Write a + 6:i8 b instead
of = c 6:i8, a + c b. This will improve performance a bit, at least if
you use Spear.

Strength reduction is another possibility to consider2. If you use Spear,
that will not make much difference (except for the noise caused by the impact
of this change on the heuristics), because Spear performs strength reduction
internally. Other theorem provers might not have this feature, so keep this in
mind as a possibility for improving performance.

2For instance, replacing a*8 with a<<3.

10

10 Examples

Example 1 (Checking a simple assertion) Assume that you want to gen-
erate an instance that corresponds to the following C-like sequential code:

int f(int a, int b) {
int a1;
if (a%2) { a1 = a + 1; }
else { a1 = a; }
int c = a1 * a1;
assert(c % 4 == 0);

}

You could check the validity of the assertion by checking the unsatisfiability
of the negated formula (corresponds to checking that the assertion can never be
false):

Checking a simple assertion
v 1.0
d a:i32 a1:i32 c:i32 inca:i32 tmp1:i32 tmp2:i1 tmp3:i32 assert:i1
c inca + a 1:i32
c tmp1 %s a 2:i32
c tmp2 trun tmp1
c a1 ite tmp2 inca a
c c * a1 a1
c tmp3 %s c 4:i32
c assert = tmp3 0:i32
p = assert 0:i1

Spear proves this query to be unsatisfiable in 0.02 sec on AMD 64 X2 4600+
for 32-bit integers, and in 0.08 sec for 64-bit integers with the default heuristics.

Example 2 (Last Fermat’s theorem) The last Fermat’s theorem says that
for integer n > 2 the equation an+bn = cn has no solutions for non-zero integers
a, b, and c.

However, if a, b, c ∈ Zm
3, the equation can have non-trivial (non-zero) solu-

tions. Let’s try to find one such example:

Finding a solution of a^4 + b^4 = c^4
v 1.0
d a:i64 b:i64 c:i64 a2:i64 b2:i64 c2:i64 a4:i64 b4:i64 c4:i64 sum:i64
c a2 * a a
c b2 * b b
c c2 * c c
c a4 * a2 a2
c b4 * b2 b2
c c4 * c2 c2
c sum + a4 b4
p = sum c4

3Ring of integers modulo m.

11

Spear finds a non-trivial solution of this query in 24.08 sec on AMD 64 X2
4600+ with the default heuristics and in 3.18 sec with the fh_1_1 heuristic4.

Example 3 (Checking the equivalence of two circuits) In hardware ver-
ification, it is frequently required to prove that some circuit transformation pre-
serves the properties of the circuit. For instance, HDL synthesis might do var-
ious optimizations, and it is important that it preserves the properties of the
original design. The process of checking the equivalence of two representations
is called equivalence checking.

In this example we shall check that a trivially simple shift-and-add synthetized
multiplier circuit actually performs single-precision multiplication. The output
of the synthetized circuit is denoted as SYNTH, while the output of the golden
model, to which we are comparing our synthetized circuit, is denoted as GOLD.
There should exist no input vectors for which the results differ. Hence, we simply
check that /= SYNTH GOLD is unsatisfiable:

v 1.0
Basic inputs and outputs
d A:i4 B:i4 GOLD:i4 SYNTH:i4

Bits of B
d b0:i1 b1:i1 b2:i1 b3:i1

Sign extended bits of B
d seb0:i8 seb1:i8 seb2:i8 seb3:i8

Zero extended A
d zea:i8

Partial products
d pp0:i8 pp1:i8 pp2:i8 pp3:i8

Shifted partial products
d spp1:i8 spp2:i8 spp3:i8

Partial sums
d ps1:i8 ps2:i8 ps3:i8

---------- Constraints ----------

Golden model of a multiplier, we
check whether the below synthetized
multiplier gives equivalent result
to the GOLD model.
c GOLD * A B

---- Synthetized multiplier ----

4Run Spear --help for more info on available parameter sets, and Spear --hidden to see
all adjustable parameters

12

Compute gating vectors by sign
extending individual bits of B
c b0 extr B 0:i8 1:i8
c b1 extr B 1:i8 2:i8
c b2 extr B 2:i8 3:i8
c b3 extr B 3:i8 4:i8

Sign extend bits of B to
get gating vectors.
c seb0 sext b0
c seb1 sext b1
c seb2 sext b2
c seb3 sext b3

Zero extend A
c zea zext A

Compute partial products
c pp0 & zea seb0
c pp1 & zea seb1
c pp2 & zea seb2
c pp3 & zea seb3

Shift partial products
c spp1 << pp1 1:i8
c spp2 << pp2 2:i8
c spp3 << pp3 3:i8

Compute partial sums
c ps1 + pp0 spp1
c ps2 + ps1 spp2
c ps3 + ps2 spp3

The lower half of ps3 is the
result of single-precision
multiplication performed by the
above synthetized circuit.
c SYNTH trun ps3

There should exist no vectors for
which the results differ (i.e.
this instance should be UNSAT).
p /= SYNTH GOLD

Spear proves this query to be UNSAT in 0.00 sec on AMD 64 X2 4600+
with the default heuristics. Hence, the simple multiplier synthetized above always
computes the same result as Spear multiplication (golden model).

13

	Legal Matters
	Introduction
	Types
	Constants
	Variables
	High-Level Structure
	Operators
	Bitwise Operators
	Predicates
	If-then-else operator
	Arithmetic Operators
	Shift Operators
	Cast Operators

	Output Format
	Notes on Efficiency
	Examples

